Suppr超能文献

基于可穿戴设备的体育教育质量评价指标构建与分析

Construction of Physical Education Quality Evaluation Index and Analysis with Wearable Device.

机构信息

Jilin Agricultural Science and Technology University, Jilin 132101, China.

出版信息

Comput Intell Neurosci. 2022 May 26;2022:1190394. doi: 10.1155/2022/1190394. eCollection 2022.

Abstract

As an important part of the education system, college physical education directly affects the comprehensive development of college students' physical and mental quality. It is necessary to build a scientific and efficient evaluation index of college physical education teaching quality. Physical fitness monitoring is an important indicator for the quality evaluation of physical education. However, how to achieve lightweight, portable, and high-accuracy quantitative physical fitness monitoring is currently a major challenge. In order to solve the above challenges, this paper proposes a method of constructing a physical education quality evaluation index based on wearable devices. The wearable device collects human ECG signals, calculates the exercise intensity of participating students, and realizes quantitative evaluation of the quality of physical education teaching. Aiming at the problems of complex equipment and low accuracy of the existing exercise intensity detection methods, this paper proposes an ECG signal wave group detection algorithm based on a one-dimensional convolutional neural network (1D-CNN) to obtain the heart rate variability signal more accurately. After obtaining the ECG feature vector, the SVM classifier is used to predict the exercise intensity. In order to verify the effectiveness of the method in this paper, the real data collected from students of one university and a public available dataset are selected for experiments. The experimental results show that the method proposed in this paper achieves a good performance.

摘要

作为教育系统的重要组成部分,大学体育教育直接影响大学生身心素质的全面发展。有必要建立科学高效的大学体育教学质量评价指标。体能监测是体育教育质量评价的重要指标。然而,如何实现轻便、便携、高精度的定量体能监测,是当前面临的重大挑战。为了解决上述挑战,本文提出了一种基于可穿戴设备的体育教育质量评价指标构建方法。该可穿戴设备采集人体 ECG 信号,计算参与学生的运动强度,实现体育教学质量的定量评价。针对现有运动强度检测方法设备复杂、精度低的问题,本文提出了一种基于一维卷积神经网络(1D-CNN)的 ECG 信号波群检测算法,以更准确地获取心率变异性信号。在获得 ECG 特征向量后,使用 SVM 分类器预测运动强度。为了验证本文方法的有效性,选择了一所大学的学生和一个公共可用数据集采集的真实数据进行实验。实验结果表明,本文提出的方法取得了良好的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c72/9162814/dab15c602d7d/CIN2022-1190394.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验