Siah Kien Wei, Wong Chi Heem, Gupta Jerry, Lo Andrew W
Laboratory for Financial Engineering, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
J Multimorb Comorb. 2022 Jun 1;12:26335565221105431. doi: 10.1177/26335565221105431. eCollection 2022 Jan-Dec.
With multimorbidity becoming the norm rather than the exception, the management of multiple chronic diseases is a major challenge facing healthcare systems worldwide.
Using a large, nationally representative database of electronic medical records from the United Kingdom spanning the years 2005-2016 and consisting over 4.5 million patients, we apply statistical methods and network analysis to identify comorbid pairs and triads of diseases and identify clusters of chronic conditions across different demographic groups. Unlike many previous studies, which generally adopt cross-sectional designs based on single snapshots of closed cohorts, we adopt a longitudinal approach to examine temporal changes in the patterns of multimorbidity. In addition, we perform survival analysis to examine the impact of multimorbidity on mortality.
The proportion of the population with multimorbidity has increased by approximately 2.5 percentage points over the last decade, with more than 17% having at least two chronic morbidities. We find that the prevalence and the severity of multimorbidity, as quantified by the number of co-occurring chronic conditions, increase progressively with age. Stratifying by socioeconomic status, we find that people living in more deprived areas are more likely to be multimorbid compared to those living in more affluent areas at all ages. The same trend holds consistently for all years in our data. In general, hypertension, diabetes, and respiratory-related diseases demonstrate high in-degree centrality and eigencentrality, while cardiac disorders show high out-degree centrality.
We use data-driven methods to characterize multimorbidity patterns in different demographic groups and their evolution over the past decade. In addition to a number of strongly associated comorbid pairs (e.g., cardiac-vascular and cardiac-metabolic disorders), we identify three principal clusters: a respiratory cluster, a cardiovascular cluster, and a mixed cardiovascular-renal-metabolic cluster. These are supported by established pathophysiological mechanisms and shared risk factors, and largely confirm and expand on the results of existing studies in the medical literature. Our findings contribute to a more quantitative understanding of the epidemiology of multimorbidity, an important pre-requisite for developing more effective medical care and policy for multimorbid patients.
随着多种疾病并存成为常态而非例外,多种慢性病的管理是全球医疗系统面临的一项重大挑战。
我们使用了一个来自英国的具有全国代表性的大型电子病历数据库,该数据库涵盖2005年至2016年,包含超过450万患者。我们应用统计方法和网络分析来识别疾病的共病对和三联症,并确定不同人口群体中的慢性病集群。与许多以往通常基于封闭队列的单一快照采用横断面设计的研究不同,我们采用纵向方法来研究多种疾病并存模式的时间变化。此外,我们进行生存分析以研究多种疾病并存对死亡率的影响。
在过去十年中,患有多种疾病的人口比例增加了约2.5个百分点,超过17%的人患有至少两种慢性疾病。我们发现,以同时出现的慢性病数量来量化,多种疾病并存的患病率和严重程度随年龄增长而逐渐增加。按社会经济地位分层,我们发现与所有年龄段生活在较富裕地区的人相比,生活在较贫困地区的人更有可能患有多种疾病。在我们的数据中,所有年份都呈现出相同的趋势。一般来说,高血压、糖尿病和呼吸系统相关疾病表现出较高的入度中心性和特征向量中心性,而心脏疾病表现出较高的出度中心性。
我们使用数据驱动的方法来描述不同人口群体中的多种疾病并存模式及其在过去十年中的演变。除了一些强关联的共病对(如心血管和心脏代谢疾病)外,我们还识别出三个主要集群:一个呼吸系统集群、一个心血管集群和一个心血管 - 肾脏 - 代谢混合集群。这些集群有既定的病理生理机制和共同的风险因素支持,在很大程度上证实并扩展了医学文献中现有研究的结果。我们的研究结果有助于更定量地理解多种疾病并存的流行病学,这是为患有多种疾病的患者制定更有效的医疗护理和政策的重要先决条件。