Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
BMJ Open. 2019 Aug 30;9(8):e029594. doi: 10.1136/bmjopen-2019-029594.
The aim of this study was to identify, with soft clustering methods, multimorbidity patterns in the electronic health records of a population ≥65 years, and to analyse such patterns in accordance with the different prevalence cut-off points applied. Fuzzy cluster analysis allows individuals to be linked simultaneously to multiple clusters and is more consistent with clinical experience than other approaches frequently found in the literature.
A cross-sectional study was conducted based on data from electronic health records.
284 primary healthcare centres in Catalonia, Spain (2012).
916 619 eligible individuals were included (women: 57.7%).
We extracted data on demographics, International Classification of Diseases version 10 chronic diagnoses, prescribed drugs and socioeconomic status for patients aged ≥65. Following principal component analysis of categorical and continuous variables for dimensionality reduction, machine learning techniques were applied for the identification of disease clusters in a fuzzy c-means analysis. Sensitivity analyses, with different prevalence cut-off points for chronic diseases, were also conducted. Solutions were evaluated from clinical consistency and significance criteria.
Multimorbidity was present in 93.1%. Eight clusters were identified with a varying number of disease values: ; and . Nuclear diseases were identified for each cluster independently of the prevalence cut-off point considered.
Multimorbidity patterns were obtained using fuzzy c-means cluster analysis. They are clinically meaningful clusters which support the development of tailored approaches to multimorbidity management and further research.
本研究旨在应用软聚类方法在≥65 岁人群的电子健康记录中识别多病症模式,并根据应用的不同患病率截断值分析这些模式。模糊聚类分析允许个体同时与多个聚类相关联,与文献中经常发现的其他方法相比,更符合临床经验。
基于电子健康记录数据进行的横断面研究。
西班牙加泰罗尼亚的 284 个初级保健中心(2012 年)。
纳入了 916619 名符合条件的个体(女性:57.7%)。
我们提取了≥65 岁患者的人口统计学、国际疾病分类第 10 版慢性诊断、处方药物和社会经济状况数据。对分类和连续变量进行主成分分析以进行降维后,应用机器学习技术在模糊 c-均值分析中识别疾病聚类。还进行了不同慢性疾病患病率截断值的敏感性分析。根据临床一致性和显著性标准评估解决方案。
93.1%的患者存在多种病症。通过模糊 c-均值聚类分析确定了 8 个具有不同疾病值的聚类:1 个聚类仅有 1 种疾病,7 个聚类有 2-5 种疾病。每个聚类都独立于考虑的患病率截断值确定了核心疾病。
应用模糊 c-均值聚类分析获得了多种病症模式。这些聚类是具有临床意义的聚类,支持制定针对多种病症管理的定制方法和进一步研究。