Suppr超能文献

使用真实世界数据进行软聚类以识别老年人群中的多种疾病模式:地中海人群的横断面研究。

Soft clustering using real-world data for the identification of multimorbidity patterns in an elderly population: cross-sectional study in a Mediterranean population.

机构信息

Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain

Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.

出版信息

BMJ Open. 2019 Aug 30;9(8):e029594. doi: 10.1136/bmjopen-2019-029594.

Abstract

OBJECTIVES

The aim of this study was to identify, with soft clustering methods, multimorbidity patterns in the electronic health records of a population ≥65 years, and to analyse such patterns in accordance with the different prevalence cut-off points applied. Fuzzy cluster analysis allows individuals to be linked simultaneously to multiple clusters and is more consistent with clinical experience than other approaches frequently found in the literature.

DESIGN

A cross-sectional study was conducted based on data from electronic health records.

SETTING

284 primary healthcare centres in Catalonia, Spain (2012).

PARTICIPANTS

916 619 eligible individuals were included (women: 57.7%).

PRIMARY AND SECONDARY OUTCOME MEASURES

We extracted data on demographics, International Classification of Diseases version 10 chronic diagnoses, prescribed drugs and socioeconomic status for patients aged ≥65. Following principal component analysis of categorical and continuous variables for dimensionality reduction, machine learning techniques were applied for the identification of disease clusters in a fuzzy c-means analysis. Sensitivity analyses, with different prevalence cut-off points for chronic diseases, were also conducted. Solutions were evaluated from clinical consistency and significance criteria.

RESULTS

Multimorbidity was present in 93.1%. Eight clusters were identified with a varying number of disease values: ; and . Nuclear diseases were identified for each cluster independently of the prevalence cut-off point considered.

CONCLUSIONS

Multimorbidity patterns were obtained using fuzzy c-means cluster analysis. They are clinically meaningful clusters which support the development of tailored approaches to multimorbidity management and further research.

摘要

目的

本研究旨在应用软聚类方法在≥65 岁人群的电子健康记录中识别多病症模式,并根据应用的不同患病率截断值分析这些模式。模糊聚类分析允许个体同时与多个聚类相关联,与文献中经常发现的其他方法相比,更符合临床经验。

设计

基于电子健康记录数据进行的横断面研究。

地点

西班牙加泰罗尼亚的 284 个初级保健中心(2012 年)。

参与者

纳入了 916619 名符合条件的个体(女性:57.7%)。

主要和次要结局测量

我们提取了≥65 岁患者的人口统计学、国际疾病分类第 10 版慢性诊断、处方药物和社会经济状况数据。对分类和连续变量进行主成分分析以进行降维后,应用机器学习技术在模糊 c-均值分析中识别疾病聚类。还进行了不同慢性疾病患病率截断值的敏感性分析。根据临床一致性和显著性标准评估解决方案。

结果

93.1%的患者存在多种病症。通过模糊 c-均值聚类分析确定了 8 个具有不同疾病值的聚类:1 个聚类仅有 1 种疾病,7 个聚类有 2-5 种疾病。每个聚类都独立于考虑的患病率截断值确定了核心疾病。

结论

应用模糊 c-均值聚类分析获得了多种病症模式。这些聚类是具有临床意义的聚类,支持制定针对多种病症管理的定制方法和进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b74/6719769/6e51f3f51679/bmjopen-2019-029594f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验