Suppr超能文献

使用预训练语言模型对心境障碍患者精神疾病家族史的识别与影响分析

Identification and Impact Analysis of Family History of Psychiatric Disorder in Mood Disorder Patients With Pretrained Language Model.

作者信息

Wan Cheng, Ge Xuewen, Wang Junjie, Zhang Xin, Yu Yun, Hu Jie, Liu Yun, Ma Hui

机构信息

Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.

Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, China.

出版信息

Front Psychiatry. 2022 May 20;13:861930. doi: 10.3389/fpsyt.2022.861930. eCollection 2022.

Abstract

Mood disorders are ubiquitous mental disorders with familial aggregation. Extracting family history of psychiatric disorders from large electronic hospitalization records is helpful for further study of onset characteristics among patients with a mood disorder. This study uses an observational clinical data set of in-patients of Nanjing Brain Hospital, affiliated with Nanjing Medical University, from the past 10 years. This paper proposes a pretrained language model: Bidirectional Encoder Representations from Transformers (BERT)-Convolutional Neural Network (CNN). We first project the electronic hospitalization records into a low-dimensional dense matrix the pretrained Chinese BERT model, then feed the dense matrix into the stacked CNN layer to capture high-level features of texts; finally, we use the fully connected layer to extract family history based on high-level features. The accuracy of our BERT-CNN model was 97.12 ± 0.37% in the real-world data set from Nanjing Brain Hospital. We further studied the correlation between mood disorders and family history of psychiatric disorder.

摘要

情绪障碍是具有家族聚集性的常见精神障碍。从大型电子住院记录中提取精神疾病家族史有助于进一步研究情绪障碍患者的发病特征。本研究使用了南京医科大学附属南京脑科医院过去10年住院患者的观察性临床数据集。本文提出了一种预训练语言模型:基于变换器的双向编码器表征(BERT)-卷积神经网络(CNN)。我们首先将电子住院记录通过预训练的中文BERT模型投影到低维密集矩阵中,然后将密集矩阵输入到堆叠的CNN层以捕获文本的高级特征;最后,我们使用全连接层基于高级特征提取家族史。在南京脑科医院的真实世界数据集中,我们的BERT-CNN模型的准确率为97.12±0.37%。我们进一步研究了情绪障碍与精神疾病家族史之间的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d8a/9163373/3a458a1e8034/fpsyt-13-861930-g0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验