Tutun Salih, Johnson Marina E, Ahmed Abdulaziz, Albizri Abdullah, Irgil Sedat, Yesilkaya Ilker, Ucar Esma Nur, Sengun Tanalp, Harfouche Antoine
Washington University in St. Louis, St. Louis, MO USA.
Montclair State University, NJ, USA.
Inf Syst Front. 2023;25(3):1261-1276. doi: 10.1007/s10796-022-10282-5. Epub 2022 May 28.
Approximately one billion individuals suffer from mental health disorders, such as depression, bipolar disorder, schizophrenia, and anxiety. Mental health professionals use various assessment tools to detect and diagnose these disorders. However, these tools are complex, contain an excessive number of questions, and require a significant amount of time to administer, leading to low participation and completion rates. Additionally, the results obtained from these tools must be analyzed and interpreted manually by mental health professionals, which may yield inaccurate diagnoses. To this extent, this research utilizes advanced analytics and artificial intelligence to develop a decision support system (DSS) that can efficiently detect and diagnose various mental disorders. As part of the DSS development process, the Network Pattern Recognition (NEPAR) algorithm is first utilized to build the assessment tool and identify the questions that participants need to answer. Then, various machine learning models are trained using participants' answers to these questions and other historical data as inputs to predict the existence and the type of their mental disorder. The results show that the proposed DSS can automatically diagnose mental disorders using only 28 questions without any human input, to an accuracy level of 89%. Furthermore, the proposed mental disorder diagnostic tool has significantly fewer questions than its counterparts; hence, it provides higher participation and completion rates. Therefore, mental health professionals can use this proposed DSS and its accompanying assessment tool for improved clinical decision-making and diagnostic accuracy.
大约有10亿人患有心理健康障碍,如抑郁症、双相情感障碍、精神分裂症和焦虑症。心理健康专业人员使用各种评估工具来检测和诊断这些疾病。然而,这些工具很复杂,包含大量问题,且管理起来需要大量时间,导致参与率和完成率较低。此外,从这些工具获得的结果必须由心理健康专业人员手动分析和解释,这可能会产生不准确的诊断。在这种情况下,本研究利用先进的分析方法和人工智能开发了一个决策支持系统(DSS),该系统可以有效地检测和诊断各种精神障碍。作为DSS开发过程的一部分,首先利用网络模式识别(NEPAR)算法构建评估工具,并确定参与者需要回答的问题。然后,使用参与者对这些问题的回答和其他历史数据作为输入,训练各种机器学习模型,以预测他们精神障碍的存在和类型。结果表明,所提出的DSS仅使用28个问题且无需任何人工输入就能自动诊断精神障碍,准确率达到89%。此外,所提出的精神障碍诊断工具的问题比同类工具少得多;因此,它提供了更高的参与率和完成率。因此,心理健康专业人员可以使用所提出的DSS及其配套的评估工具来改善临床决策和诊断准确性。