Suppr超能文献

RCC-Supporter:使用机器学习支持肾细胞癌治疗决策。

RCC-Supporter: supporting renal cell carcinoma treatment decision-making using machine learning.

机构信息

Department of Urology, Pusan National University School of Medicine, Yangsan, Republic of Korea.

Department of Urology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.

出版信息

BMC Med Inform Decis Mak. 2024 Sep 16;24(Suppl 2):259. doi: 10.1186/s12911-024-02660-7.

Abstract

BACKGROUND

The population diagnosed with renal cell carcinoma, especially in Asia, represents 36.6% of global cases, with the incidence rate of renal cell carcinoma in Korea steadily increasing annually. However, treatment options for renal cell carcinoma are diverse, depending on clinical stage and histologic characteristics. Hence, this study aims to develop a machine learning based clinical decision-support system that recommends personalized treatment tailored to the individual health condition of each patient.

RESULTS

We reviewed the real-world medical data of 1,867 participants diagnosed with renal cell carcinoma between November 2008 and June 2021 at the Pusan National University Yangsan Hospital in South Korea. Data were manually divided into a follow-up group where the patients did not undergo surgery or chemotherapy (Surveillance), a group where the patients underwent surgery (Surgery), and a group where the patients received chemotherapy before or after surgery (Chemotherapy). Feature selection was conducted to identify the significant clinical factors influencing renal cell carcinoma treatment decisions from 2,058 features. These features included subsets of 20, 50, 75, 100, and 150, as well as the complete set and an additional 50 expert-selected features. We applied representative machine learning algorithms, namely Decision Tree, Random Forest, and Gradient Boosting Machine (GBM). We analyzed the performance of three applied machine learning algorithms, among which the GBM algorithm achieved an accuracy score of 95% (95% CI, 92-98%) for the 100 and 150 feature sets. The GBM algorithm using 100 and 150 features achieved better performance than the algorithm using features selected by clinical experts (93%, 95% CI 89-97%).

CONCLUSIONS

We developed a preliminary personalized treatment decision-support system (TDSS) called "RCC-Supporter" by applying machine learning (ML) algorithms to determine personalized treatment for the various clinical situations of RCC patients. Our results demonstrate the feasibility of using machine learning-based clinical decision support systems for treatment decisions in real clinical settings.

摘要

背景

在全球范围内,被诊断患有肾细胞癌的人群中,亚洲地区的占比达到 36.6%,韩国的肾细胞癌发病率也在逐年稳步上升。然而,肾细胞癌的治疗选择因临床阶段和组织学特征而异。因此,本研究旨在开发一种基于机器学习的临床决策支持系统,根据每位患者的个体健康状况推荐个性化的治疗方案。

结果

我们回顾了 2008 年 11 月至 2021 年 6 月期间在韩国釜山大学延世医院被诊断为肾细胞癌的 1867 名参与者的真实世界医疗数据。数据被手动分为未接受手术或化疗的随访组(监测组)、接受手术的手术组和接受手术前后化疗的化疗组。我们从 2058 个特征中进行特征选择,以确定影响肾细胞癌治疗决策的显著临床因素。这些特征包括 20、50、75、100 和 150 个特征的子集,以及完整集和另外 50 个专家选择的特征。我们应用了代表性的机器学习算法,即决策树、随机森林和梯度提升机(GBM)。我们分析了三种应用的机器学习算法的性能,其中 GBM 算法在 100 个和 150 个特征集上的准确率达到 95%(95%置信区间,92-98%)。使用 100 个和 150 个特征的 GBM 算法的性能优于使用临床专家选择的特征的算法(93%,95%置信区间 89-97%)。

结论

我们通过应用机器学习(ML)算法开发了一个名为“RCC-Supporter”的初步个性化治疗决策支持系统(TDSS),用于确定 RCC 患者各种临床情况下的个性化治疗方案。我们的研究结果表明,在真实的临床环境中使用基于机器学习的临床决策支持系统进行治疗决策是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa9e/11403845/4c0b67fb8de1/12911_2024_2660_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验