文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

轻量级医疗保健 CNN 模型,用于在多参数 MRI 上检测前列腺癌。

Light Weighted Healthcare CNN Model to Detect Prostate Cancer on Multiparametric MRI.

机构信息

Senior IEEE Member, Bhopal, India.

Academician, Jamia Hamdard Delhi, Delhi, India.

出版信息

Comput Intell Neurosci. 2022 May 28;2022:5497120. doi: 10.1155/2022/5497120. eCollection 2022.


DOI:10.1155/2022/5497120
PMID:35669675
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9167116/
Abstract

The SEMRCNN model is proposed for autonomously extracting prostate cancer locations from regions of multiparametric magnetic resonance imaging (MP-MRI). Feature maps are explored in order to provide fine segmentation based on the candidate regions. Two parallel convolutional networks retrieve these maps of apparent diffusion coefficient (ADC) and T2W images, which are then integrated to use the complimentary information in MP-MRI. By utilizing extrusion and excitation blocks, it is feasible to automatically increase the number of relevant features in the fusion feature map. The aim of this study is to study the current scenario of the SE Mask-RCNN and deep convolutional network segmentation model that can automatically identify prostate cancer in the MP-MRI prostatic region. Experiments are conducted using 140 instances. SEMRCNN segmentation of prostate cancer lesions has a Dice coefficient of 0.654, a sensitivity of 0.695, a specificity of 0.970, and a positive predictive value of 0.685. SEMRCNN outperforms other models like as V net, Resnet50-U-net, Mask-RCNN, and U network model for prostate cancer MP-MRI segmentation. This approach accomplishes fine segmentation of lesions by recognizing and finding potential locations of prostate cancer lesions, eliminating interference from surrounding areas, and improving the learning of the lesions' features.

摘要

SEMRCNN 模型被提出用于从多参数磁共振成像(MP-MRI)的区域中自主提取前列腺癌位置。为了提供基于候选区域的精细分割,探索了特征图。两个并行的卷积网络检索这些表观扩散系数(ADC)和 T2W 图像的图谱,然后将其集成以利用 MP-MRI 中的互补信息。通过利用挤压和激励块,可以自动增加融合特征图中相关特征的数量。本研究旨在研究 SE Mask-RCNN 和深度卷积网络分割模型在 MP-MRI 前列腺区域自动识别前列腺癌的现状。使用 140 个实例进行了实验。SEMRCNN 对前列腺癌病变的分割具有 0.654 的 Dice 系数、0.695 的灵敏度、0.970 的特异性和 0.685 的阳性预测值。SEMRCNN 在前列腺癌 MP-MRI 分割方面优于 V 网、Resnet50-U-net、Mask-RCNN 和 U 网模型等其他模型。这种方法通过识别和找到前列腺癌病变的潜在位置,消除周围区域的干扰,并改善病变特征的学习,实现了病变的精细分割。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/a6c8d3098da6/CIN2022-5497120.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/d393b296505a/CIN2022-5497120.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/242baf4f5133/CIN2022-5497120.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/ac059e448ca7/CIN2022-5497120.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/9d5783f604a9/CIN2022-5497120.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/f5d4199d3472/CIN2022-5497120.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/a0a00791e030/CIN2022-5497120.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/edd8895b9910/CIN2022-5497120.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/06a3ca58763f/CIN2022-5497120.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/469e6f852dfc/CIN2022-5497120.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/a6c8d3098da6/CIN2022-5497120.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/d393b296505a/CIN2022-5497120.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/242baf4f5133/CIN2022-5497120.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/ac059e448ca7/CIN2022-5497120.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/9d5783f604a9/CIN2022-5497120.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/f5d4199d3472/CIN2022-5497120.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/a0a00791e030/CIN2022-5497120.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/edd8895b9910/CIN2022-5497120.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/06a3ca58763f/CIN2022-5497120.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/469e6f852dfc/CIN2022-5497120.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a5/9167116/a6c8d3098da6/CIN2022-5497120.010.jpg

相似文献

[1]
Light Weighted Healthcare CNN Model to Detect Prostate Cancer on Multiparametric MRI.

Comput Intell Neurosci. 2022

[2]
Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.

Med Image Anal. 2017-8-24

[3]
Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.

Eur Radiol. 2019-8-29

[4]
A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.

Med Phys. 2020-9

[5]
Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet.

Med Phys. 2020-12

[6]
A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.

AJR Am J Roentgenol. 2021-1

[7]
An inception-based deep multiparametric net to classify clinical significance MRI regions of prostate cancer.

Phys Med Biol. 2022-11-4

[8]
Explainable AI for CNN-based prostate tumor segmentation in multi-parametric MRI correlated to whole mount histopathology.

Radiat Oncol. 2022-4-2

[9]
Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.

Comput Methods Programs Biomed. 2021-10

[10]
Mutually communicated model based on multi-parametric MRI for automated segmentation and classification of prostate cancer.

Med Phys. 2023-6

引用本文的文献

[1]
Deep Learning Techniques for Prostate Cancer Analysis and Detection: Survey of the State of the Art.

J Imaging. 2025-7-28

[2]
Multi-Scale Digital Pathology Patch-Level Prostate Cancer Grading Using Deep Learning: Use Case Evaluation of DiagSet Dataset.

Bioengineering (Basel). 2024-6-18

[3]
Research progress on deep learning in magnetic resonance imaging-based diagnosis and treatment of prostate cancer: a review on the current status and perspectives.

Front Oncol. 2023-6-13

本文引用的文献

[1]
Asthma self-management app for Indonesian asthmatics: A patient-centered design.

Comput Methods Programs Biomed. 2021-11

[2]
Prostate cancer localization using multiparametric MRI based on semi-supervised techniques with automated seed initialization.

IEEE Trans Inf Technol Biomed. 2012-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索