Senior IEEE Member, Bhopal, India.
Academician, Jamia Hamdard Delhi, Delhi, India.
Comput Intell Neurosci. 2022 May 28;2022:5497120. doi: 10.1155/2022/5497120. eCollection 2022.
The SEMRCNN model is proposed for autonomously extracting prostate cancer locations from regions of multiparametric magnetic resonance imaging (MP-MRI). Feature maps are explored in order to provide fine segmentation based on the candidate regions. Two parallel convolutional networks retrieve these maps of apparent diffusion coefficient (ADC) and T2W images, which are then integrated to use the complimentary information in MP-MRI. By utilizing extrusion and excitation blocks, it is feasible to automatically increase the number of relevant features in the fusion feature map. The aim of this study is to study the current scenario of the SE Mask-RCNN and deep convolutional network segmentation model that can automatically identify prostate cancer in the MP-MRI prostatic region. Experiments are conducted using 140 instances. SEMRCNN segmentation of prostate cancer lesions has a Dice coefficient of 0.654, a sensitivity of 0.695, a specificity of 0.970, and a positive predictive value of 0.685. SEMRCNN outperforms other models like as V net, Resnet50-U-net, Mask-RCNN, and U network model for prostate cancer MP-MRI segmentation. This approach accomplishes fine segmentation of lesions by recognizing and finding potential locations of prostate cancer lesions, eliminating interference from surrounding areas, and improving the learning of the lesions' features.
SEMRCNN 模型被提出用于从多参数磁共振成像(MP-MRI)的区域中自主提取前列腺癌位置。为了提供基于候选区域的精细分割,探索了特征图。两个并行的卷积网络检索这些表观扩散系数(ADC)和 T2W 图像的图谱,然后将其集成以利用 MP-MRI 中的互补信息。通过利用挤压和激励块,可以自动增加融合特征图中相关特征的数量。本研究旨在研究 SE Mask-RCNN 和深度卷积网络分割模型在 MP-MRI 前列腺区域自动识别前列腺癌的现状。使用 140 个实例进行了实验。SEMRCNN 对前列腺癌病变的分割具有 0.654 的 Dice 系数、0.695 的灵敏度、0.970 的特异性和 0.685 的阳性预测值。SEMRCNN 在前列腺癌 MP-MRI 分割方面优于 V 网、Resnet50-U-net、Mask-RCNN 和 U 网模型等其他模型。这种方法通过识别和找到前列腺癌病变的潜在位置,消除周围区域的干扰,并改善病变特征的学习,实现了病变的精细分割。
Comput Intell Neurosci. 2022
Bioengineering (Basel). 2024-6-18
Comput Methods Programs Biomed. 2021-11
IEEE Trans Inf Technol Biomed. 2012-11