基于活心肌细胞的混合生物机器人的声学制造

Acoustic Fabrication of Living Cardiomyocyte-based Hybrid Biorobots.

作者信息

Wang Jie, Soto Fernando, Ma Peng, Ahmed Rajib, Yang Huaxiao, Chen Sihan, Wang Jibo, Liu Chun, Akin Demir, Fu Kaiyu, Cao Xu, Chen Pu, Hsu En-Chi, Soh Hyongsok Tom, Stoyanova Tanya, Wu Joseph C, Demirci Utkan

机构信息

Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States.

Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States.

出版信息

ACS Nano. 2022 Jul 26;16(7):10219-10230. doi: 10.1021/acsnano.2c01908. Epub 2022 Jun 7.

Abstract

Organized assemblies of cells have demonstrated promise as bioinspired actuators and devices; still, the fabrication of such "biorobots" has predominantly relied on passive assembly methods that reduce design capabilities. To address this, we have developed a strategy for the rapid formation of functional biorobots composed of live cardiomyocytes. We employ tunable acoustic fields to facilitate the efficient aggregation of millions of cells into high-density macroscopic architectures with directed cell orientation and enhanced cell-cell interaction. These biorobots can perform actuation functions both through naturally occurring contraction-relaxation cycles and through external control with chemical and electrical stimuli. We demonstrate that these biorobots can be used to achieve controlled actuation of a soft skeleton and pumping of microparticles. The biocompatible acoustic assembly strategy described here should prove generally useful for cellular manipulation in the context of tissue engineering, soft robotics, and other applications.

摘要

细胞的有序组装已显示出作为受生物启发的致动器和装置的潜力;然而,此类“生物机器人”的制造主要依赖于被动组装方法,这限制了设计能力。为了解决这一问题,我们开发了一种快速形成由活心肌细胞组成的功能性生物机器人的策略。我们利用可调谐声场促进数百万个细胞高效聚集形成具有定向细胞取向和增强细胞间相互作用的高密度宏观结构。这些生物机器人既可以通过自然发生的收缩-松弛循环,也可以通过化学和电刺激的外部控制来执行驱动功能。我们证明这些生物机器人可用于实现对软骨架的受控驱动和微粒的泵送。本文所述的生物相容性声学组装策略在组织工程、软机器人技术及其他应用的细胞操作方面应具有普遍用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索