Jeon Hyobin, Park Keunhwan, Sun Jeong-Yun, Kim Ho-Young
Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea.
Sci Adv. 2025 Mar 21;11(12):eadt5888. doi: 10.1126/sciadv.adt5888.
It is challenging to emulate biological forms and functions with artificial machines: Fluidity and adaptability seen in cellular organisms, characterized by their ability to deform, split, merge, and engulf, are hard to recapitulate with traditional rigid robotic structures. A promising avenue to tackle this problem is harnessing the supreme deformability of liquids while providing stable yet flexible shells around them. Here, we report a highly robust liquid-particle composite, named a Particle-armored liquid roBot (PB), featuring a liquid blob coated with unusually abundant superhydrophobic particles. The enhanced deformability and structural stability of our millimetric PBs enable a range of versatile robotic functions, such as navigating through complex environments, engulfing and transporting cargoes, merging, and adapting to various environments. We use both theoretical analysis and experimental approaches to develop a framework for predicting the shape evolution, dynamics, and robotic functions of PBs. The forms and functions of our liquid robots mark an essential hallmark toward miniature biomachines that perform like cells.
细胞生物体中所展现出的流动性和适应性,其特点是能够变形、分裂、融合和吞噬,很难用传统的刚性机器人结构来重现。解决这个问题的一个有前景的途径是利用液体的超强可变形性,同时在其周围提供稳定而灵活的外壳。在此,我们报告了一种高度稳健的液体 - 颗粒复合材料,名为颗粒装甲液体机器人(PB),其特征是一个液滴涂覆有异常丰富的超疏水颗粒。我们的毫米级PB增强的可变形性和结构稳定性实现了一系列多功能机器人功能,例如在复杂环境中导航、吞噬和运输货物、融合以及适应各种环境。我们使用理论分析和实验方法来开发一个框架,用于预测PB的形状演变、动力学和机器人功能。我们的液体机器人的形态和功能标志着迈向像细胞一样运作的微型生物机器的一个重要标志。