文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物机器人药物输送在生物医学中的应用

Biorobotic Drug Delivery for Biomedical Applications.

机构信息

Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.

School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea.

出版信息

Molecules. 2024 Aug 2;29(15):3663. doi: 10.3390/molecules29153663.


DOI:10.3390/molecules29153663
PMID:39125066
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11314275/
Abstract

Despite extensive efforts, current drug-delivery systems face biological barriers and difficulties in bench-to-clinical use. Biomedical robotic systems have emerged as a new strategy for drug delivery because of their innovative diminutive engines. These motors enable the biorobots to move independently rather than relying on body fluids. The main components of biorobots are engines controlled by external stimuli, chemical reactions, and biological responses. Many biorobot designs are inspired by blood cells or microorganisms that possess innate swimming abilities and can incorporate living materials into their structures. This review explores the mechanisms of biorobot locomotion, achievements in robotic drug delivery, obstacles, and the perspectives of translational research.

摘要

尽管付出了广泛的努力,当前的药物输送系统仍然面临着生物屏障和从实验室到临床应用的困难。生物医学机器人系统作为一种新的药物输送策略出现了,因为它们具有创新性的微型引擎。这些发动机使生物机器人能够独立移动,而不是依赖于体液。生物机器人的主要组成部分是由外部刺激、化学反应和生物反应控制的发动机。许多生物机器人的设计灵感来自于具有先天游泳能力的血细胞或微生物,并且可以将活体材料纳入其结构中。本综述探讨了生物机器人运动的机制、机器人药物输送的成就、障碍以及转化研究的观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e525/11314275/e7f24ce5f1ac/molecules-29-03663-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e525/11314275/492562fd3287/molecules-29-03663-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e525/11314275/3bfed321068c/molecules-29-03663-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e525/11314275/97c0e33e6be6/molecules-29-03663-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e525/11314275/e7f24ce5f1ac/molecules-29-03663-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e525/11314275/492562fd3287/molecules-29-03663-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e525/11314275/3bfed321068c/molecules-29-03663-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e525/11314275/97c0e33e6be6/molecules-29-03663-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e525/11314275/e7f24ce5f1ac/molecules-29-03663-g004.jpg

相似文献

[1]
Biorobotic Drug Delivery for Biomedical Applications.

Molecules. 2024-8-2

[2]
Cardiac Muscle-cell Based Actuator and Self-stabilizing Biorobot - PART 1.

J Vis Exp. 2017-7-11

[3]
Development and characterization of muscle-based actuators for self-stabilizing swimming biorobots.

Lab Chip. 2016-7-28

[4]
Acoustic Fabrication of Living Cardiomyocyte-based Hybrid Biorobots.

ACS Nano. 2022-7-26

[5]
Biohybrid robotics: From the nanoscale to the macroscale.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021-9

[6]
Towards soft robotic devices for site-specific drug delivery.

Expert Rev Med Devices. 2015

[7]
Optimization of DNA extraction from low-yield and degraded samples using the BioRobot EZ1 and BioRobot M48.

J Forensic Sci. 2006-9

[8]
Robot motor learning shows emergence of frequency-modulated, robust swimming with an invariant Strouhal number.

J R Soc Interface. 2024-3

[9]
Cell-Like Micromotors.

Acc Chem Res. 2018-8-3

[10]
Biodegradable Small-Scale Swimmers for Biomedical Applications.

Adv Mater. 2021-10

引用本文的文献

[1]
Multicellular muscle-tendon bioprinting of mechanically optimized musculoskeletal bioactuators with enhanced force transmission.

Sci Adv. 2025-7-18

本文引用的文献

[1]
Urease-powered nanobots for radionuclide bladder cancer therapy.

Nat Nanotechnol. 2024-4

[2]
Nanomechanical action opens endo-lysosomal compartments.

Nat Commun. 2023-10-20

[3]
Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy.

Sci Adv. 2023-2-22

[4]
Magnetic-Acoustic Sequentially Actuated CAR T Cell Microrobots for Precision Navigation and In Situ Antitumor Immunoactivation.

Adv Mater. 2023-5

[5]
Design of a self-driven probiotic-CRISPR/Cas9 nanosystem for sono-immunometabolic cancer therapy.

Nat Commun. 2022-12-22

[6]
A New Paradigm of Pharmaceutical Drug Delivery Systems (DDS): Challenges for Space, Time, and Shapes.

Innov Pharm. 2018-10-26

[7]
Multifunctional biohybrid magnetite microrobots for imaging-guided therapy.

Sci Robot. 2017-11-22

[8]
Soft erythrocyte-based bacterial microswimmers for cargo delivery.

Sci Robot. 2018-4-25

[9]
Development of a magnetic microrobot for carrying and delivering targeted cells.

Sci Robot. 2018-6-27

[10]
Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo.

Sci Robot. 2020-1-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索