Chen Li-Ming, Reisman Sarah E
The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
Acc Chem Res. 2024 Mar 5;57(5):751-762. doi: 10.1021/acs.accounts.3c00775. Epub 2024 Feb 12.
ConspectusAfter decades of palladium dominating the realm of transition-metal-catalyzed cross-coupling, recent years have witnessed exciting advances in the development of new nickel-catalyzed cross-coupling reactions to form C(sp) centers. Nickel possesses distinct properties compared with palladium, such as facile single-electron transfer to C(sp) electrophiles and rapid C-C reductive elimination from Ni. These properties, among others, make nickel particularly well-suited for reductive cross-coupling (RCC) in which two electrophiles are coupled and an exogenous reductant is used to turn over the metal catalyst. Ni-catalyzed RCCs use readily available and stable electrophiles as starting materials and exhibit good functional group tolerance, which makes them appealing for applications in the synthesis of complex molecules. Building upon the foundational work in Ni-catalyzed RCCs by the groups of Kumada, Durandetti, Weix, and others, as well as the advancements in Ni-catalyzed enantioselective redox-neutral cross-couplings led by Fu and co-workers, we initiated a program to explore the feasibility of developing highly enantioselective Ni-catalyzed RCCs. Our research has also been driven by a keen interest in unraveling the factors contributing to enantioinduction and electrophile activation as we seek new avenues for advancing our understanding and further developing these reactions.In the first part of this Account, we organize our reported methods on the basis of the identity of the C(sp) electrophiles, including benzylic chlorides, -hydroxyphthalimide (NHP) esters, and α-chloro esters and nitriles. We highlight how the selection of specific chiral ligands plays a pivotal role in achieving high cross-selectivity and enantioselectivity. In addition, we show that reduction can be accomplished not only with heterogeneous reductants, such as Mn, but also with the soluble organic reductant tetrakis(dimethylamino)ethylene (TDAE), as well as electrochemically. The use of homogeneous reductants, such as TDAE, is well suited for studying the mechanism of the transformation. Although this Account primarily focuses on RCCs, we also highlight our work using trifluoroborate (BFK) salts as radical precursors for enantioselective dual-Ni/photoredox systems.At the end of this Account, we summarize the relevant mechanistic studies of two closely related asymmetric reductive alkenylation reactions developed in our laboratory and provide a context between our work and related mechanistic studies by others. We discuss how the ligand properties influence the rates and mechanisms of electrophile activation and how understanding the mode of C(sp) radical generation can be used to optimize the yield of an RCC. Our research endeavors to offer insights on the intricate mechanisms at play in asymmetric Ni-catalyzed RCCs with the goal of using the rate of electrophile activation to improve the substrate scope of enantioselective RCCs. We anticipate that the insights we share in this Account can provide guidance for the development of new methods in this field.
概述
在钯主导过渡金属催化交叉偶联领域数十年之后,近年来在开发新型镍催化交叉偶联反应以形成C(sp)中心方面取得了令人振奋的进展。与钯相比,镍具有独特的性质,例如易于向C(sp)亲电试剂进行单电子转移以及能从镍快速进行C-C还原消除。这些性质,以及其他一些性质,使得镍特别适合用于还原交叉偶联(RCC),即两个亲电试剂进行偶联,并使用外源还原剂使金属催化剂循环。镍催化的RCC使用易于获得且稳定的亲电试剂作为起始原料,并表现出良好的官能团耐受性,这使其在复杂分子合成中的应用颇具吸引力。基于熊田、迪朗代蒂、韦克斯等人在镍催化RCC方面的基础工作,以及傅等人在镍催化对映选择性氧化还原中性交叉偶联方面的进展,我们启动了一个项目来探索开发高度对映选择性镍催化RCC的可行性。我们的研究还受到了浓厚兴趣的驱动,即在寻求推进我们的理解并进一步发展这些反应的新途径时,弄清单一对映体诱导和亲电试剂活化的因素。
在本综述的第一部分,我们根据C(sp)亲电试剂的种类来组织我们报道的方法,包括苄基氯化物、α-羟基邻苯二甲酰亚胺(NHP)酯以及α-氯代酯和腈。我们强调了特定手性配体的选择在实现高交叉选择性和对映选择性方面如何发挥关键作用。此外,我们表明还原不仅可以用非均相还原剂(如锰)来完成,还可以用可溶性有机还原剂四(二甲氨基)乙烯(TDAE)以及通过电化学方法来实现。使用诸如TDAE这样的均相还原剂非常适合研究转化的机理。尽管本综述主要关注RCC,但我们也强调了我们使用三氟硼酸盐(BFK)盐作为对映选择性双镍/光氧化还原体系的自由基前体的工作。
在本综述的结尾,我们总结了我们实验室开发的两个密切相关的不对称还原烯基化反应的相关机理研究,并在我们的工作与其他人的相关机理研究之间提供了背景信息。我们讨论了配体性质如何影响亲电试剂活化的速率和机理,以及理解C(sp)自由基生成的模式如何可用于优化RCC的产率。我们的研究致力于深入了解不对称镍催化RCC中起作用的复杂机理,目标是利用亲电试剂活化的速率来扩大对映选择性RCC的底物范围。我们预计我们在本综述中分享的见解可为该领域新方法的开发提供指导。