Suppr超能文献

使用基于斑块级分类标签的多层伪监督方法进行组织病理学图像语义分割。

Multi-layer pseudo-supervision for histopathology tissue semantic segmentation using patch-level classification labels.

机构信息

Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China; Guangdong Cardiovascular Institute, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China.

Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China; The School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.

出版信息

Med Image Anal. 2022 Aug;80:102487. doi: 10.1016/j.media.2022.102487. Epub 2022 May 24.

Abstract

Tissue-level semantic segmentation is a vital step in computational pathology. Fully-supervised models have already achieved outstanding performance with dense pixel-level annotations. However, drawing such labels on the giga-pixel whole slide images is extremely expensive and time-consuming. In this paper, we use only patch-level classification labels to achieve tissue semantic segmentation on histopathology images, finally reducing the annotation efforts. We propose a two-step model including a classification and a segmentation phases. In the classification phase, we propose a CAM-based model to generate pseudo masks by patch-level labels. In the segmentation phase, we achieve tissue semantic segmentation by our propose Multi-Layer Pseudo-Supervision. Several technical novelties have been proposed to reduce the information gap between pixel-level and patch-level annotations. As a part of this paper, we introduce a new weakly-supervised semantic segmentation (WSSS) dataset for lung adenocarcinoma (LUAD-HistoSeg). We conduct several experiments to evaluate our proposed model on two datasets. Our proposed model outperforms five state-of-the-art WSSS approaches. Note that we can achieve comparable quantitative and qualitative results with the fully-supervised model, with only around a 2% gap for MIoU and FwIoU. By comparing with manual labeling on a randomly sampled 100 patches dataset, patch-level labeling can greatly reduce the annotation time from hours to minutes. The source code and the released datasets are available at: https://github.com/ChuHan89/WSSS-Tissue.

摘要

组织层面的语义分割是计算病理学中的重要步骤。全监督模型已经在密集像素级标注方面取得了优异的性能。然而,在千兆像素的全切片图像上绘制这些标签是极其昂贵和耗时的。在本文中,我们仅使用基于补丁的分类标签来实现组织语义分割,最终减少标注工作。我们提出了一个两步模型,包括分类和分割阶段。在分类阶段,我们提出了一种基于 CAM 的模型,通过基于补丁的标签生成伪掩模。在分割阶段,我们通过提出的多层伪监督实现组织语义分割。提出了几项技术创新来缩小像素级和补丁级标注之间的信息差距。作为本文的一部分,我们引入了一个新的用于肺腺癌(LUAD-HistoSeg)的弱监督语义分割(WSSS)数据集。我们在两个数据集上进行了几项实验来评估我们提出的模型。我们提出的模型在两个数据集上都优于五个最先进的 WSSS 方法。请注意,我们可以使用全监督模型获得可比的定量和定性结果,MIoU 和 FwIoU 的差距约为 2%。通过与随机采样的 100 个补丁数据集上的手动标注进行比较,基于补丁的标注可以大大减少标注时间,从数小时减少到几分钟。源代码和发布的数据集可在以下网址获取:https://github.com/ChuHan89/WSSS-Tissue。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验