Faculty of Information Technology & Computer Science, University of Central Punjab, Lahore, Punjab, Pakistan.
Khalifa University Center for Autonomous Robotic Systems (KUCARS) and Department of Mechanical & Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
Sci Rep. 2024 Sep 28;14(1):22533. doi: 10.1038/s41598-024-73823-9.
Recent developments have highlighted the critical role that computer-aided diagnosis (CAD) systems play in analyzing whole-slide digital histopathology images for detecting gastric cancer (GC). We present a novel framework for gastric histology classification and segmentation (GHCS) that offers modest yet meaningful improvements over existing CAD models for GC classification and segmentation. Our methodology achieves marginal improvements over conventional deep learning (DL) and machine learning (ML) models by adaptively focusing on pertinent characteristics of images. This contributes significantly to our study, highlighting that the proposed model, which performs well on normalized images, is robust in certain respects, particularly in handling variability and generalizing to different datasets. We anticipate that this robustness will lead to better results across various datasets. An expectation-maximizing Naïve Bayes classifier that uses an updated Gaussian Mixture Model is at the heart of the suggested GHCS framework. The effectiveness of our classifier is demonstrated by experimental validation on two publicly available datasets, which produced exceptional classification accuracies of 98.87% and 97.28% on validation sets and 98.47% and 97.31% on test sets. Our framework shows a slight but consistent improvement over previously existing techniques in gastric histopathology image classification tasks, as demonstrated by comparative analysis. This may be attributed to its ability to capture critical features of gastric histopathology images better. Furthermore, using an improved Fuzzy c-means method, our study produces good results in GC histopathology picture segmentation, outperforming state-of-the-art segmentation models with a Dice coefficient of 65.21% and a Jaccard index of 60.24%. The model's interpretability is complemented by Grad-CAM visualizations, which help understand the decision-making process and increase the model's trustworthiness for end-users, especially clinicians.
近年来的发展突显了计算机辅助诊断 (CAD) 系统在分析全切片数字组织病理学图像以检测胃癌 (GC) 方面的关键作用。我们提出了一种新颖的胃组织学分类和分割 (GHCS) 框架,该框架在 GC 分类和分割的现有 CAD 模型基础上进行了适度但有意义的改进。我们的方法通过自适应地关注图像的相关特征,在传统的深度学习 (DL) 和机器学习 (ML) 模型上取得了边际改进。这对我们的研究有重要贡献,表明在处理变异性和推广到不同数据集方面,所提出的模型在正常化图像上表现良好,在某些方面具有稳健性。我们预计这种稳健性将在各种数据集上产生更好的结果。我们提出的 GHCS 框架的核心是一种使用更新的高斯混合模型的期望最大化朴素贝叶斯分类器。通过在两个公开可用的数据集上进行实验验证,证明了我们的分类器的有效性,在验证集上产生了 98.87%和 97.28%的出色分类准确率,在测试集上产生了 98.47%和 97.31%的分类准确率。通过比较分析,我们的框架在胃组织病理学图像分类任务中显示出比现有技术略有但一致的改进,这可能归因于它更好地捕捉胃组织病理学图像的关键特征。此外,我们的研究使用改进的模糊 C 均值方法在 GC 组织病理学图像分割方面取得了良好的结果,与最先进的分割模型相比,Dice 系数为 65.21%,Jaccard 指数为 60.24%。Grad-CAM 可视化补充了模型的可解释性,有助于理解决策过程并提高模型对最终用户(尤其是临床医生)的可信度。