Suppr超能文献

利用全局到局部多尺度卷积神经网络对组织病理学图像进行子宫内膜增生诊断和子宫内膜上皮内瘤变筛查。

Diagnosis of endometrium hyperplasia and screening of endometrial intraepithelial neoplasia in histopathological images using a global-to-local multi-scale convolutional neural network.

机构信息

Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China.

Department of Pathology, Northwest Women and Children's Hospital, Xi'an, Shaanxi 710061, China.

出版信息

Comput Methods Programs Biomed. 2022 Jun;221:106906. doi: 10.1016/j.cmpb.2022.106906. Epub 2022 May 24.

Abstract

BACKGROUND AND OBJECTIVE

Endometrial hyperplasia (EH), a uterine pathology characterized by an increased gland-to-stroma ratio compared to normal endometrium (NE), may precede the development of endometrial cancer (EC). Particularly, atypical EH also known as endometrial intraepithelial neoplasia (EIN), has been proven to be a precursor of EC. Thus, diagnosing different EH (EIN, hyperplasia without atypia (HwA) and NE) and screening EIN from non-EIN are crucial for the health of female reproductive system. Computer-aided-diagnosis (CAD) was used to diagnose endometrial histological images based on machine learning and deep learning. However, these studies perform single-scale image analysis and thus can only characterize partial endometrial features. Empirically, both global (cytological changes relative to background) and local features (gland-to-stromal ratio and lesion dimension) are helpful in identifying endometrial lesions.

METHODS

We proposed a global-to-local multi-scale convolutional neural network (G2LNet) to diagnose different EH and to screen EIN in endometrial histological images stained by hematoxylin and eosin (H&E). The G2LNet first used a supervised model in the global part to extract contextual features of endometrial lesions, and simultaneously deployed multi-instance learning in the local part to obtain textural features from multiple image patches. The contextual and textural features were used together to diagnose different endometrial lesions after fusion by a convolutional block attention module. In addition, we visualized the salient regions on both the global image and local images to investigate the interpretability of the model in endometrial diagnosis.

RESULTS

In the five-fold cross validation on 7812 H&E images from 467 endometrial specimens, G2LNet achieved an accuracy of 97.01% for EH diagnosis and an area-under-the-curve (AUC) of 0.9902 for EIN screening, significantly higher than state-of-the-arts. In external validation on 1631 H&E images from 135 specimens, G2LNet achieved an accuracy of 95.34% for EH diagnosis, which was comparable to that of a mid-level pathologist (95.71%). Specifically, G2LNet had advantages in diagnosing EIN, while humans performed better in identifying NE and HwA.

CONCLUSIONS

The developed G2LNet that integrated both the global (contextual) and local (textural) features may help pathologists diagnose endometrial lesions in clinical practices, especially to improve the accuracy and efficiency of screening for precancerous lesions.

摘要

背景与目的

子宫内膜增生(EH)是一种子宫病理学表现,其腺体与基质的比例高于正常子宫内膜(NE),可能是子宫内膜癌(EC)的前期病变。特别是非典型性子宫内膜增生(EH),也称为子宫内膜上皮内瘤变(EIN),已被证实是 EC 的前期病变。因此,诊断不同类型的 EH(EIN、无非典型性增生(HwA)和 NE)以及从非 EIN 中筛选出 EIN 对于女性生殖系统的健康至关重要。计算机辅助诊断(CAD)已被用于基于机器学习和深度学习来诊断子宫内膜组织学图像。然而,这些研究仅进行单尺度图像分析,因此只能描述部分子宫内膜特征。经验表明,全局(相对于背景的细胞学变化)和局部特征(腺体与基质的比例和病变大小)都有助于识别子宫内膜病变。

方法

我们提出了一种全局到局部多尺度卷积神经网络(G2LNet),用于诊断不同类型的 EH,并在苏木精和伊红(H&E)染色的子宫内膜组织学图像中筛选出 EIN。G2LNet 首先在全局部分使用有监督模型提取子宫内膜病变的上下文特征,并在局部部分同时部署多实例学习以从多个图像补丁中获取纹理特征。融合后的上下文和纹理特征通过卷积块注意力模块一起用于诊断不同的子宫内膜病变。此外,我们还在全局图像和局部图像上可视化了显著区域,以研究模型在子宫内膜诊断中的可解释性。

结果

在 467 例子宫内膜标本的 7812 张 H&E 图像的五重交叉验证中,G2LNet 对 EH 诊断的准确率为 97.01%,对 EIN 筛查的曲线下面积(AUC)为 0.9902,明显高于现有技术。在 135 例标本的 1631 张 H&E 图像的外部验证中,G2LNet 对 EH 的诊断准确率为 95.34%,与中级病理学家(95.71%)相当。具体而言,G2LNet 在诊断 EIN 方面具有优势,而人类在识别 NE 和 HwA 方面表现更好。

结论

该研究开发的 G2LNet 集成了全局(上下文)和局部(纹理)特征,可能有助于病理学家在临床实践中诊断子宫内膜病变,特别是提高对癌前病变筛查的准确性和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验