Suppr超能文献

预测模型不适用于因果推断。

Predictive models aren't for causal inference.

机构信息

Ocean Frontier Institute, Dalhousie University, Department of Biology, Halifax, Nova Scotia, Canada.

出版信息

Ecol Lett. 2022 Aug;25(8):1741-1745. doi: 10.1111/ele.14033. Epub 2022 Jun 7.

Abstract

Ecologists often rely on observational data to understand causal relationships. Although observational causal inference methodologies exist, predictive techniques such as model selection based on information criterion (e.g. AIC) remains a common approach used to understand ecological relationships. However, predictive approaches are not appropriate for drawing causal conclusions. Here, we highlight the distinction between predictive and causal inference and show how predictive techniques can lead to biased causal estimates. Instead, we encourage ecologists to valid causal inference methods such as the backdoor criterion, a graphical rule that can be used to determine causal relationships across observational studies.

摘要

生态学家通常依赖观测数据来理解因果关系。虽然存在观测性因果推断方法,但基于信息准则(例如 AIC)进行模型选择等预测技术仍然是用于理解生态关系的常用方法。然而,预测方法并不适合得出因果结论。在这里,我们强调了预测和因果推断之间的区别,并展示了预测技术如何导致有偏差的因果估计。相反,我们鼓励生态学家采用有效的因果推断方法,例如后门准则,这是一种可以用于确定观测研究中因果关系的图形规则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验