Suppr超能文献

自杀研究中的因果推断:何时应该(不应该!)控制无关变量。

Causal inference in suicide research: When you should (and should not!) control for extraneous variables.

机构信息

Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, USA.

Department of Psychological Sciences, Texas Tech University, Lubbock, Texas, USA.

出版信息

Suicide Life Threat Behav. 2021 Feb;51(1):148-161. doi: 10.1111/sltb.12681.

Abstract

OBJECTIVE

Although causal inference is often straightforward in experimental contexts, few research questions in suicide are amenable to experimental manipulation and randomized control. Instead, suicide prevention specialists must rely on observational data and statistical control of confounding variables to make effective causal inferences. We provide a brief summary of recent covariate practice and a tutorial on casual inference tools for covariate selection in suicide research.

METHOD

We provide an introduction to modern causal inference tools, suggestions for statistical control selection, and demonstrations using simulated data.

RESULTS

Statistical controls are often mistakenly selected due to their significant correlation with other study variables, their consistency with previous research, or no explicit reason at all. We clarify what it means to control for a variable and when controlling for the wrong covariates systematically distorts results. We describe directed acyclic graphs (DAGs) and tools for identifying the right choice of covariates. Finally, we provide four best practices for integrating causal inference tools in future studies.

CONCLUSION

The use of causal model tools, such as DAGs, allows researchers to carefully and thoughtfully select statistical controls and avoid presenting distorted findings; however, limitations of this approach are discussed.

摘要

目的

尽管因果推断在实验环境中通常很直接,但很少有自杀相关的研究问题可以通过实验操作和随机对照来解决。相反,自杀预防专家必须依赖观察性数据和混杂变量的统计控制来进行有效的因果推断。我们简要总结了最近的协变量实践,并就自杀研究中协变量选择的因果推断工具提供了一个教程。

方法

我们介绍了现代因果推断工具、统计控制选择的建议,并使用模拟数据进行了演示。

结果

由于与其他研究变量的显著相关性、与先前研究的一致性或根本没有明确的原因,统计控制往往会被错误地选择。我们澄清了控制变量的含义,以及何时错误地控制协变量会系统地扭曲结果。我们描述了有向无环图(DAGs)和用于确定正确选择协变量的工具。最后,我们提供了将因果推断工具整合到未来研究中的四项最佳实践。

结论

使用因果模型工具,如 DAGs,允许研究人员仔细而有思考地选择统计控制,并避免呈现扭曲的发现;然而,我们也讨论了这种方法的局限性。

相似文献

2
Causal Diagrams: Pitfalls and Tips.因果图:陷阱与技巧。
J Epidemiol. 2020 Apr 5;30(4):153-162. doi: 10.2188/jea.JE20190192. Epub 2020 Feb 1.
3
A biologist's guide to model selection and causal inference.生物学家的模型选择与因果推断指南。
Proc Biol Sci. 2021 Jan 27;288(1943):20202815. doi: 10.1098/rspb.2020.2815.
4
Predictive models aren't for causal inference.预测模型不适用于因果推断。
Ecol Lett. 2022 Aug;25(8):1741-1745. doi: 10.1111/ele.14033. Epub 2022 Jun 7.
6
Directed Acyclic Graphs in Surgical Research.有向无环图在外科研究中的应用。
J Surg Res. 2023 Feb;282:285-288. doi: 10.1016/j.jss.2022.07.017. Epub 2022 Aug 29.
8
Tutorial on directed acyclic graphs.有向无环图教程。
J Clin Epidemiol. 2022 Feb;142:264-267. doi: 10.1016/j.jclinepi.2021.08.001. Epub 2021 Aug 8.

引用本文的文献

本文引用的文献

1
Assortativity of suicide-related posting on social media.社交媒体上与自杀相关帖子的同配性。
Am Psychol. 2020 Apr;75(3):365-379. doi: 10.1037/amp0000477. Epub 2019 Jun 13.
7
The new statistics: why and how.新的统计数据:原因和方法。
Psychol Sci. 2014 Jan;25(1):7-29. doi: 10.1177/0956797613504966. Epub 2013 Nov 12.
10
The interpersonal theory of suicide.人际关系理论的自杀。
Psychol Rev. 2010 Apr;117(2):575-600. doi: 10.1037/a0018697.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验