Suppr超能文献

TermiCron - 弥合 FHIR 术语服务器和元数据存储库之间的差距。

TermiCron - Bridging the Gap Between FHIR Terminology Servers and Metadata Repositories.

机构信息

IT Center for Clinical Research (ITCR-L), University of Lübeck, Germany.

Institute of Medical Informatics, University of Lübeck, Germany.

出版信息

Stud Health Technol Inform. 2022 Jun 6;290:71-75. doi: 10.3233/SHTI220034.

Abstract

The large variability of data models, specifications, and interpretations of data elements is particular to the healthcare domain. Achieving semantic interoperability is the first step to enable reuse of healthcare data. To ensure interoperability, metadata repositories (MDR) are increasingly used to manage data elements on a structural level, while terminology servers (TS) manage the ontologies, terminologies, coding systems and value sets on a semantic level. In practice, however, this strict separation is not always followed; instead, semantical information is stored and maintained directly in the MDR, as a link between both systems is missing. This may be reasonable up to a certain level of complexity, but it quickly reaches its limitations with increasing complexity. The goal of this approach is to combine both components in a compatible manner. We present TermiCron, a synchronization engine that provides synchronized value sets from TS in MDRs, including versioning and annotations. Prototypical results were shown for the terminology server Ontoserver and two established MDR systems. Bridging the semantic and structural gap between the two infrastructure components, this approach enables shared use of metadata and reuse of corresponding health information by establishing a clear separation of the two systems and thus serves to strengthen reuse as well as to increase quality.

摘要

数据模型、规范和数据元素解释的巨大可变性是医疗保健领域所特有的。实现语义互操作性是启用医疗保健数据重用的第一步。为了确保互操作性,元数据存储库 (MDR) 越来越多地用于在结构级别上管理数据元素,而术语服务器 (TS) 则在语义级别上管理本体、术语、编码系统和值集。然而,在实践中,这种严格的分离并不总是遵循的;相反,语义信息直接存储和维护在 MDR 中,因为这两个系统之间缺少链接。在一定的复杂程度内,这可能是合理的,但随着复杂性的增加,它很快就会达到其局限性。这种方法的目标是以兼容的方式组合这两个组件。我们提出了 TermiCron,这是一种同步引擎,它提供了来自 TS 的 MDR 中的同步值集,包括版本控制和注释。为术语服务器 Ontoserver 和两个已建立的 MDR 系统展示了原型结果。通过在这两个基础设施组件之间架起语义和结构之间的鸿沟,这种方法通过明确分离两个系统来实现元数据的共享使用和相应健康信息的重用,从而有助于加强重用并提高质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验