Suppr超能文献

基于生活方式数据,运用机器学习方法对2型糖尿病进行性能分析与预测。

Performance analysis and prediction of type 2 diabetes mellitus based on lifestyle data using machine learning approaches.

作者信息

Ganie Shahid Mohammad, Malik Majid Bashir, Arif Tasleem

机构信息

Department of Computer Sciences, BGSB University, UT J&K, Rajouri, India.

Department of Information Technology, BGSB University, UT J&K, Rajouri, India.

出版信息

J Diabetes Metab Disord. 2022 Mar 14;21(1):339-352. doi: 10.1007/s40200-022-00981-w. eCollection 2022 Jun.

Abstract

OBJECTIVE

Diabetes is a chronic fatal disease that has affected millions of people all over the globe. Type 2 Diabetes Mellitus (T2DM) accounts for 90% of the affected population among all types of diabetes. Millions of T2DM patients remain undiagnosed due to lack of awareness and under resourced healthcare system. So, there is a dire need for a diagnostic and prognostic tool that shall help the healthcare providers, clinicians and practitioners with early prediction and hence can recommend the lifestyle changes required to stop the progression of diabetes. The main objective of this research is to develop a framework based on machine learning techniques using only lifestyle indicators for prediction of T2DM disease. Moreover, prediction model can be used without visiting clinical labs and hospital readmissions.

METHOD

A proposed framework is presented and implemented based on machine learning paradigms using lifestyle indicators for better prediction of T2DM disease. The current research has involved different experts like Diabetologists, Endocrinologists, Dieticians, Nutritionists, etc. for selecting the contributing 1552 instances and 11 attributes lifestyle biological features to promote health and manage complications towards T2DM disease. The dataset has been collected through survey and google forms from different geographical regions.

RESULTS

Seven machine learning classifiers were employed namely K-Nearest Neighbour (KNN), Linear Regression (LR), Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB). Gradient Boosting classifier outperformed best with an accuracy rate of 97.24% for training and 96.90% for testing separately followed by RF, DT, NB, SVM, LR, and KNN as 95.36%, 92.52%, 90.72%, 90.20%, 90.20% and 77.06% respectively. However, in terms of precision, RF achieved high performance (0.980%) and KNN performed the lowest (0.793%). As far as recall is being concerned, GB achieved the highest rate of 0.975% and KNN showed the worst rate of 0.774%. Also, GB is top performed in terms of f1-score. According to the ROCs, GB and NB had a better area under the curve compared to the others.

CONCLUSION

The research developed a realistic health management system for T2DM disease based on machine learning techniques using only lifestyle data for prediction of T2DM. To extend the current study, these models shall be used for different, large and real-time datasets which share the commonality of data with T2DM disease to establish the efficacy of the proposed system.

摘要

目的

糖尿病是一种慢性致命疾病,已影响全球数百万人。2型糖尿病(T2DM)在所有糖尿病类型中占受影响人群的90%。由于缺乏认识和医疗资源不足,数百万T2DM患者仍未被诊断出来。因此,迫切需要一种诊断和预后工具,以帮助医疗保健提供者、临床医生和从业者进行早期预测,从而能够推荐阻止糖尿病进展所需的生活方式改变。本研究的主要目的是开发一个基于机器学习技术的框架,仅使用生活方式指标来预测T2DM疾病。此外,无需前往临床实验室和再次住院即可使用预测模型。

方法

提出并实施了一个基于机器学习范式的框架,使用生活方式指标来更好地预测T2DM疾病。当前的研究涉及了不同的专家,如糖尿病专家、内分泌学家、营养师、营养学家等,以选择1552个有贡献的实例和11个生活方式生物学特征属性,以促进健康并管理T2DM疾病的并发症。该数据集是通过调查和谷歌表单从不同地理区域收集的。

结果

使用了七种机器学习分类器,即K近邻(KNN)、线性回归(LR)、支持向量机(SVM)、朴素贝叶斯(NB)、决策树(DT)、随机森林(RF)和梯度提升(GB)。梯度提升分类器表现最佳,训练准确率为97.24%,测试准确率为96.90%,其次是RF、DT、NB、SVM、LR和KNN,分别为95.36%、92.52%、90.72%、90.20%、90.20%和77.06%。然而,在精度方面,RF表现出色(0.980%),KNN表现最差(0.793%)。就召回率而言,GB达到了最高的0.975%,KNN表现最差,为0.774%。此外,GB在F1分数方面表现最佳。根据ROC曲线,GB和NB的曲线下面积比其他分类器更好。

结论

该研究基于机器学习技术开发了一个针对T2DM疾病的现实健康管理系统,仅使用生活方式数据来预测T2DM。为了扩展当前的研究,这些模型应应用于与T2DM疾病具有数据共性的不同、大型和实时数据集,以确定所提出系统的有效性。

相似文献

引用本文的文献

本文引用的文献

5
Predictive Supervised Machine Learning Models for Diabetes Mellitus.用于糖尿病的预测性监督机器学习模型
SN Comput Sci. 2020;1(5):240. doi: 10.1007/s42979-020-00250-8. Epub 2020 Jul 21.
7
Deep learning approach for diabetes prediction using PIMA Indian dataset.使用皮马印第安人数据集的糖尿病预测深度学习方法。
J Diabetes Metab Disord. 2020 Apr 14;19(1):391-403. doi: 10.1007/s40200-020-00520-5. eCollection 2020 Jun.
8
Machine Learning for Health Services Researchers.机器学习在卫生服务研究中的应用。
Value Health. 2019 Jul;22(7):808-815. doi: 10.1016/j.jval.2019.02.012.
9
A deep learning approach to adherence detection for type 2 diabetics.一种用于检测2型糖尿病患者依从性的深度学习方法。
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2896-2899. doi: 10.1109/EMBC.2017.8037462.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验