Suppr超能文献

使用皮马印第安人数据集的糖尿病预测深度学习方法。

Deep learning approach for diabetes prediction using PIMA Indian dataset.

作者信息

Naz Huma, Ahuja Sachin

机构信息

Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.

出版信息

J Diabetes Metab Disord. 2020 Apr 14;19(1):391-403. doi: 10.1007/s40200-020-00520-5. eCollection 2020 Jun.

Abstract

PURPOSE

International Diabetes Federation (IDF) stated that 382 million people are living with diabetes worldwide. Over the last few years, the impact of diabetes has been increased drastically, which makes it a global threat. At present, Diabetes has steadily been listed in the top position as a major cause of death. The number of affected people will reach up to 629 million i.e. 48% increase by 2045. However, diabetes is largely preventable and can be avoided by making lifestyle changes. These changes can also lower the chances of developing heart disease and cancer. So, there is a dire need for a prognosis tool that can help the doctors with early detection of the disease and hence can recommend the lifestyle changes required to stop the progression of the deadly disease.

METHOD

Diabetes if untreated may turn into fatal and directly or indirectly invites lot of other diseases such as heart attack, heart failure, brain stroke and many more. Therefore, early detection of diabetes is very significant so that timely action can be taken and the progression of the disease may be prevented to avoid further complications. Healthcare organizations accumulate huge amount of data including Electronic health records, images, omics data, and text but gaining knowledge and insight into the data remains a key challenge. The latest advances in Machine learning technologies can be applied for obtaining hidden patterns, which may diagnose diabetes at an early phase. This research paper presents a methodology for diabetes prediction using a diverse machine learning algorithm using the PIMA dataset.

RESULTS

The accuracy achieved by functional classifiers Artificial Neural Network (ANN), Naive Bayes (NB), Decision Tree (DT) and Deep Learning (DL) lies within the range of 90-98%. Among the four of them, DL provides the best results for diabetes onset with an accuracy rate of 98.07% on the PIMA dataset. Hence, this proposed system provides an effective prognostic tool for healthcare officials. The results obtained can be used to develop a novel automatic prognosis tool that can be helpful in early detection of the disease.

CONCLUSION

The outcome of the study confirms that DL provides the best results with the most promising extracted features. DL achieves the accuracy of 98.07% which can be used for further development of the automatic prognosis tool. The accuracy of the DL approach can further be enhanced by including the omics data for prediction of the onset of the disease.

摘要

目的

国际糖尿病联盟(IDF)指出,全球有3.82亿人患有糖尿病。在过去几年中,糖尿病的影响急剧增加,使其成为全球威胁。目前,糖尿病已稳步位列主要死因之首。到2045年,受影响人数将达到6.29亿,即增加48%。然而,糖尿病在很大程度上是可预防的,通过改变生活方式可以避免。这些改变还可以降低患心脏病和癌症的几率。因此,迫切需要一种预后工具,能够帮助医生早期发现疾病,并因此推荐阻止这种致命疾病进展所需的生活方式改变。

方法

糖尿病若不治疗可能会致命,并直接或间接引发许多其他疾病,如心脏病发作、心力衰竭、脑卒中等。因此,早期发现糖尿病非常重要,以便能够及时采取行动,预防疾病进展,避免进一步的并发症。医疗保健组织积累了大量数据,包括电子健康记录、图像、组学数据和文本,但从这些数据中获取知识和见解仍然是一个关键挑战。机器学习技术的最新进展可用于获取隐藏模式,从而在早期阶段诊断糖尿病。本文提出了一种使用PIMA数据集的多种机器学习算法进行糖尿病预测的方法。

结果

功能分类器人工神经网络(ANN)、朴素贝叶斯(NB)、决策树(DT)和深度学习(DL)所达到的准确率在90%-98%范围内。在这四种方法中,DL在PIMA数据集上对糖尿病发病的预测效果最佳,准确率为98.07%。因此,该系统为医疗保健人员提供了一种有效的预后工具。所得结果可用于开发一种新型自动预后工具,有助于疾病的早期检测。

结论

研究结果证实,DL凭借最有前景的提取特征提供了最佳结果。DL达到了98.07%的准确率,可用于自动预后工具的进一步开发。通过纳入组学数据以预测疾病发病,DL方法的准确率可进一步提高。

相似文献

1
Deep learning approach for diabetes prediction using PIMA Indian dataset.使用皮马印第安人数据集的糖尿病预测深度学习方法。
J Diabetes Metab Disord. 2020 Apr 14;19(1):391-403. doi: 10.1007/s40200-020-00520-5. eCollection 2020 Jun.
4
Deep convolutional neural network and IoT technology for healthcare.用于医疗保健的深度卷积神经网络和物联网技术。
Digit Health. 2024 Jan 17;10:20552076231220123. doi: 10.1177/20552076231220123. eCollection 2024 Jan-Dec.

引用本文的文献

10

本文引用的文献

6
Intelligible support vector machines for diagnosis of diabetes mellitus.用于糖尿病诊断的可理解支持向量机
IEEE Trans Inf Technol Biomed. 2010 Jul;14(4):1114-20. doi: 10.1109/TITB.2009.2039485. Epub 2010 Jan 12.
8
Obesity, metabolic syndrome, and cardiovascular disease.肥胖、代谢综合征与心血管疾病。
J Clin Endocrinol Metab. 2004 Jun;89(6):2595-600. doi: 10.1210/jc.2004-0372.
9
Cardiovascular disease risk profiles.心血管疾病风险概况。
Am Heart J. 1991 Jan;121(1 Pt 2):293-8. doi: 10.1016/0002-8703(91)90861-b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验