Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
ACS Appl Mater Interfaces. 2022 Jun 22;14(24):28258-28269. doi: 10.1021/acsami.2c03922. Epub 2022 Jun 8.
Flexible micro-light-emitting diodes (f-μLEDs) have been regarded as an attractive light source for the next-generation human-machine interfaces, thanks to their noticeable optoelectronic performances. However, when it comes to their practical utilizations fulfilling industrial standards, there have been unsolved reliability and durability issues of the f-μLEDs, despite previous developments in the high-performance f-μLEDs for various applications. Herein, highly robust flexible μLEDs (f-HμLEDs) with 20 × 20 arrays, which are realized by a siloxane-based organic-inorganic hybrid material (SHM), are reported. The f-HμLEDs are created by combining the f-μLED fabrication process with SHM synthesis procedures (i.e., sol-gel reaction and successive photocuring). The outstanding mechanical, thermal, and environmental stabilities of our f-HμLEDs are confirmed by a host of experimental and theoretical examinations, including a bending fatigue test (10 bending/unbending cycles), a lifetime accelerated stress test (85 °C and 85% relative humidity), and finite element method simulations. Eventually, to demonstrate the potential of our f-HμLEDs for practical applications of flexible displays and/or biomedical devices, their white light emission due to quantum dot-based color conversion of blue light emitted by GaN-based f-HμLEDs is demonstrated, and the biocompatibility of our f-HμLEDs is confirmed via cytotoxicity and cell proliferation tests with muscle, bone, and neuron cell lines. As far as we can tell, this work is the first demonstration of the flexible μLED encapsulation platform based on the SHM, which proved its mechanical, thermal, and environmental stabilities and biocompatibility, enabling us to envisage biomedical and/or flexible display applications using our f-HμLEDs.
灵活的微型发光二极管(f-μLED)因其出色的光电性能而被视为下一代人机界面的有吸引力的光源。然而,当涉及到满足工业标准的实际应用时,尽管之前已经开发出了用于各种应用的高性能 f-μLED,但 f-μLED 的可靠性和耐用性问题仍然没有得到解决。在此,我们报道了一种基于硅氧烷的有机-无机杂化材料(SHM)的高可靠性灵活 μLED(f-HμLED),其具有 20×20 个阵列。f-HμLED 是通过将 f-μLED 制造工艺与 SHM 合成程序(即溶胶-凝胶反应和连续光固化)相结合而制造的。通过一系列实验和理论检查,包括弯曲疲劳测试(10 次弯曲/释放循环)、加速寿命应力测试(85°C 和 85%相对湿度)和有限元方法模拟,证实了我们的 f-HμLED 的出色机械、热和环境稳定性。最终,为了展示我们的 f-HμLED 在灵活显示和/或生物医学设备的实际应用中的潜力,我们展示了基于量子点的蓝色 GaN 基 f-HμLED 光的颜色转换产生的白光发射,并且通过肌肉、骨骼和神经元细胞系的细胞毒性和细胞增殖测试证实了我们的 f-HμLED 的生物相容性。据我们所知,这项工作是首次展示基于 SHM 的灵活 μLED 封装平台,该平台证明了其机械、热和环境稳定性以及生物相容性,使我们能够设想使用我们的 f-HμLED 进行生物医学和/或灵活显示应用。