Liu Xiaoyan, Tao Langyi, Mei Shiliang, Cui Zhongjie, Shen Daqi, Sheng Zhengxuan, Yu Jinghao, Ye Pengfei, Zhi Ting, Tao Tao, Wang Lei, Guo Ruiqian, Tian Pengfei
College of Integrated Circuit Science and Engineering, and National and Local Joint Engineering Laboratory for RF Integration and Micro-Packaging Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Nanomaterials (Basel). 2022 Feb 13;12(4):627. doi: 10.3390/nano12040627.
GaN-based μLEDs with superior properties have enabled outstanding achievements in emerging micro-display, high-quality illumination, and communication applications, especially white-light visible light communication (WL-VLC). WL-VLC systems can simultaneously provide white-light solid-state lighting (SSL) while realizing high-speed wireless optical communication. However, the bandwidth of conventional white-light LEDs is limited by the long-lifetime yellow yttrium aluminum garnet (YAG) phosphor, which restricts the available communication performance. In this paper, white-light GaN-μLEDs combining blue InGaN-μLEDs with green/red perovskite quantum dots (PQDs) are proposed and experimentally demonstrated. Green PQDs (G-PQDs) and red PQDs (R-PQDs) with narrow emission spectrum and short fluorescence lifetime as color converters instead of the conventional slow-response YAG phosphor are mixed with high-bandwidth blue InGaN-μLEDs to generate white light. The communication and illumination performances of the WL-VLC system based on the white-light GaN-based μLEDs are systematically investigated. The VLC properties of monochromatic light (green/red) from G-PQDs or R-PQDs are studied in order to optimize the performance of the white light. The modulation bandwidths of blue InGaN-μLEDs, G-PQDs, and R-PQDs are up to 162 MHz, 64 MHz, and 90 MHz respectively. Furthermore, the white-light bandwidth of 57.5 MHz and the Commission Internationale de L'Eclairage (CIE) of (0.3327, 0.3114) for the WL-VLC system are achieved successfully. These results demonstrate the great potential and the direction of the white-light GaN-μLEDs with PQDs as color converters to be applied for VLC and SSL simultaneously. Meanwhile, these results contribute to the implementation of full-color micro-displays based on μLEDs with high-quality PQDs as color-conversion materials.
具有卓越性能的氮化镓基微发光二极管(μLED)在新兴的微显示器、高质量照明及通信应用领域取得了显著成就,尤其是在白光可见光通信(WL-VLC)方面。WL-VLC系统能够在实现高速无线光通信的同时提供白光固态照明(SSL)。然而,传统白光发光二极管的带宽受长寿命黄色钇铝石榴石(YAG)荧光粉的限制,这制约了可用的通信性能。本文提出并通过实验证明了将蓝色氮化铟镓微发光二极管(InGaN-μLED)与绿色/红色钙钛矿量子点(PQD)相结合的白光氮化镓基微发光二极管。将具有窄发射光谱和短荧光寿命的绿色量子点(G-PQD)和红色量子点(R-PQD)作为颜色转换器,替代传统的慢响应YAG荧光粉,与高带宽蓝色InGaN-μLED混合以产生白光。系统地研究了基于白光氮化镓基微发光二极管的WL-VLC系统的通信和照明性能。研究了来自G-PQD或R-PQD的单色光(绿色/红色)的VLC特性,以优化白光性能。蓝色InGaN-μLED、G-PQD和R-PQD的调制带宽分别高达162兆赫兹、64兆赫兹和九十兆赫兹。此外,成功实现了WL-VLC系统57.5兆赫兹的白光带宽和国际照明委员会(CIE)坐标为(0.3327, 0.3114)的色度。这些结果证明了以PQD作为颜色转换器的白光氮化镓基微发光二极管在同时应用于VLC和SSL方面的巨大潜力和发展方向。同时,这些结果有助于基于以高质量PQD作为颜色转换材料的微发光二极管实现全彩微显示器。