Suppr超能文献

基于急诊胸部 X 光的 COVID-19 患者严重度和死亡率预测模型的开发。

Development of severity and mortality prediction models for covid-19 patients at emergency department including the chest x-ray.

机构信息

Servicio de Radiología, Hospital Universitario y Politécnico La Fe, Valencia, Spain.

Grupo de Investigación Biomédica en Imagen (GIBI2(30)), Instituto de Investigación Sanitaria La Fe, Valencia, Spain.

出版信息

Radiologia (Engl Ed). 2022 May-Jun;64(3):214-227. doi: 10.1016/j.rxeng.2021.09.004. Epub 2022 Jan 21.

Abstract

OBJECTIVES

To develop prognosis prediction models for COVID-19 patients attending an emergency department (ED) based on initial chest X-ray (CXR), demographics, clinical and laboratory parameters.

METHODS

All symptomatic confirmed COVID-19 patients admitted to our hospital ED between February 24th and April 24th 2020 were recruited. CXR features, clinical and laboratory variables and CXR abnormality indices extracted by a convolutional neural network (CNN) diagnostic tool were considered potential predictors on this first visit. The most serious individual outcome defined the three severity level: 0) home discharge or hospitalization ≤ 3 days, 1) hospital stay >3 days and 2) intensive care requirement or death. Severity and in-hospital mortality multivariable prediction models were developed and internally validated. The Youden index was used for the optimal threshold selection of the classification model.

RESULTS

A total of 440 patients were enrolled (median 64 years; 55.9% male); 13.6% patients were discharged, 64% hospitalized, 6.6% required intensive care and 15.7% died. The severity prediction model included oxygen saturation/inspired oxygen fraction (SatO2/FiO2), age, C-reactive protein (CRP), lymphocyte count, extent score of lung involvement on CXR (ExtScoreCXR), lactate dehydrogenase (LDH), D-dimer level and platelets count, with AUC-ROC = 0.94 and AUC-PRC = 0.88. The mortality prediction model included age, SatO2/FiO2, CRP, LDH, CXR extent score, lymphocyte count and D-dimer level, with AUC-ROC = 0.97 and AUC-PRC = 0.78. The addition of CXR CNN-based indices did not improve significantly the predictive metrics.

CONCLUSION

The developed and internally validated severity and mortality prediction models could be useful as triage tools in ED for patients with COVID-19 or other virus infections with similar behaviour.

摘要

目的

基于初始胸部 X 光(CXR)、人口统计学、临床和实验室参数,为急诊科就诊的 COVID-19 患者开发预后预测模型。

方法

招募 2020 年 2 月 24 日至 4 月 24 日期间在我院急诊科因症状确诊 COVID-19 的所有患者。考虑到卷积神经网络(CNN)诊断工具提取的 CXR 特征、临床和实验室变量以及 CXR 异常指数作为首次就诊时的潜在预测因子。最严重的个体结局定义了三个严重程度等级:0)居家出院或住院 ≤ 3 天,1)住院时间>3 天,2)需要重症监护或死亡。开发并内部验证了严重程度和住院死亡率的多变量预测模型。使用约登指数选择分类模型的最佳阈值。

结果

共纳入 440 例患者(中位年龄 64 岁;55.9%为男性);13.6%的患者出院,64%的患者住院,6.6%的患者需要重症监护,15.7%的患者死亡。严重程度预测模型包括氧饱和度/吸入氧分数(SatO2/FiO2)、年龄、C 反应蛋白(CRP)、淋巴细胞计数、CXR 肺受累程度评分(ExtScoreCXR)、乳酸脱氢酶(LDH)、D-二聚体水平和血小板计数,AUC-ROC=0.94,AUC-PRC=0.88。死亡率预测模型包括年龄、SatO2/FiO2、CRP、LDH、CXR 程度评分、淋巴细胞计数和 D-二聚体水平,AUC-ROC=0.97,AUC-PRC=0.78。添加基于 CXR CNN 的指标并没有显著提高预测指标。

结论

所开发的内部验证严重程度和死亡率预测模型可作为急诊科 COVID-19 或其他具有类似行为的病毒感染患者的分诊工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3368/8776406/ce92140cde0e/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验