BK21 FOUR Project, Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea.
Research and Development Team, Laon Medi Inc., Sungnam, Korea.
Sci Rep. 2022 Jun 8;12(1):9429. doi: 10.1038/s41598-022-13595-2.
This study evaluates the accuracy and efficiency of automatic tooth segmentation in digital dental models using deep learning. We developed a dynamic graph convolutional neural network (DGCNN)-based algorithm for automatic tooth segmentation and classification using 516 digital dental models. We segmented 30 digital dental models using three methods for comparison: (1) automatic tooth segmentation (AS) using the DGCNN-based algorithm from LaonSetup software, (2) landmark-based tooth segmentation (LS) using OrthoAnalyzer software, and (3) tooth designation and segmentation (DS) using Autolign software. We evaluated the segmentation success rate, mesiodistal (MD) width, clinical crown height (CCH), and segmentation time. For the AS, LS, and DS, the tooth segmentation success rates were 97.26%, 97.14%, and 87.86%, respectively (p < 0.001, post-hoc; AS, LS > DS), the means of MD widths were 8.51, 8.28, and 8.63 mm, respectively (p < 0.001, post hoc; DS > AS > LS), the means of CCHs were 7.58, 7.65, and 7.52 mm, respectively (p < 0.001, post-hoc; LS > DS, AS), and the means of segmentation times were 57.73, 424.17, and 150.73 s, respectively (p < 0.001, post-hoc; AS < DS < LS). Automatic tooth segmentation of a digital dental model using deep learning showed high segmentation success rate, accuracy, and efficiency; thus, it can be used for orthodontic diagnosis and appliance fabrication.
本研究评估了深度学习在数字牙科模型中自动牙齿分割的准确性和效率。我们使用 516 个数字牙科模型开发了一种基于动态图卷积神经网络(DGCNN)的自动牙齿分割和分类算法。我们使用三种方法对 30 个数字牙科模型进行分割以进行比较:(1)使用 LaonSetup 软件的基于 DGCNN 的算法进行自动牙齿分割(AS),(2)使用 OrthoAnalyzer 软件进行基于标志点的牙齿分割(LS),以及(3)使用 Autolign 软件进行牙齿指定和分割(DS)。我们评估了分割成功率、近远中(MD)宽度、临床牙冠高度(CCH)和分割时间。对于 AS、LS 和 DS,牙齿分割成功率分别为 97.26%、97.14%和 87.86%(p<0.001,事后检验;AS、LS>DS),MD 宽度的平均值分别为 8.51、8.28 和 8.63mm(p<0.001,事后检验;DS>AS>LS),CCH 的平均值分别为 7.58、7.65 和 7.52mm(p<0.001,事后检验;LS>DS,AS),分割时间的平均值分别为 57.73、424.17 和 150.73s(p<0.001,事后检验;AS<DS<LS)。使用深度学习对数字牙科模型进行自动牙齿分割显示出高分割成功率、准确性和效率;因此,它可用于正畸诊断和矫治器制作。