Suppr超能文献

基于贝叶斯卷积神经网络的具有置信区域的自动头影测量标志点检测。

Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks.

机构信息

School of Mechanical Engineering, Yonsei University, 50 Yonsei Ro, Seodaemun Gu, Seoul, 03722, Republic of Korea.

Department of Orthodontics, School of Medicine, Ewha Womans University, Anyangcheon-ro 1071, Yangcheon-gu, Seoul, 07985, Republic of Korea.

出版信息

BMC Oral Health. 2020 Oct 7;20(1):270. doi: 10.1186/s12903-020-01256-7.

Abstract

BACKGROUND

Despite the integral role of cephalometric analysis in orthodontics, there have been limitations regarding the reliability, accuracy, etc. of cephalometric landmarks tracing. Attempts on developing automatic plotting systems have continuously been made but they are insufficient for clinical applications due to low reliability of specific landmarks. In this study, we aimed to develop a novel framework for locating cephalometric landmarks with confidence regions using Bayesian Convolutional Neural Networks (BCNN).

METHODS

We have trained our model with the dataset from the ISBI 2015 grand challenge in dental X-ray image analysis. The overall algorithm consisted of a region of interest (ROI) extraction of landmarks and landmarks estimation considering uncertainty. Prediction data produced from the Bayesian model has been dealt with post-processing methods with respect to pixel probabilities and uncertainties.

RESULTS

Our framework showed a mean landmark error (LE) of 1.53 ± 1.74 mm and achieved a successful detection rate (SDR) of 82.11, 92.28 and 95.95%, respectively, in the 2, 3, and 4 mm range. Especially, the most erroneous point in preceding studies, Gonion, reduced nearly halves of its error compared to the others. Additionally, our results demonstrated significantly higher performance in identifying anatomical abnormalities. By providing confidence regions (95%) that consider uncertainty, our framework can provide clinical convenience and contribute to making better decisions.

CONCLUSION

Our framework provides cephalometric landmarks and their confidence regions, which could be used as a computer-aided diagnosis tool and education.

摘要

背景

尽管头影测量分析在正畸学中具有重要作用,但在头影测量标志点追踪的可靠性、准确性等方面仍存在一些局限性。人们一直在尝试开发自动绘图系统,但由于特定标志点的可靠性较低,这些系统还不足以满足临床应用的需求。在本研究中,我们旨在开发一种使用贝叶斯卷积神经网络(BCNN)定位具有置信区间的头影测量标志点的新框架。

方法

我们使用 ISBI 2015 年牙科 X 射线图像分析挑战赛中的数据集来训练我们的模型。总体算法包括感兴趣区域(ROI)提取和考虑不确定性的标志点估计。从贝叶斯模型中生成的预测数据已通过像素概率和不确定性的后处理方法进行处理。

结果

我们的框架的平均标志点误差(LE)为 1.53±1.74mm,分别在 2、3 和 4mm 范围内实现了 82.11%、92.28%和 95.95%的成功检测率(SDR)。特别是,在前人研究中最易出错的标志点——下颌角,其误差与其他标志点相比减少了近一半。此外,我们的结果还表明,在识别解剖异常方面具有更高的性能。通过提供考虑不确定性的置信区间(95%),我们的框架可以提供临床便利,并有助于做出更好的决策。

结论

我们的框架提供了头影测量标志点及其置信区间,可作为计算机辅助诊断工具和教育资源使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c2/7541217/615054438278/12903_2020_1256_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验