Suppr超能文献

基于深度学习的网络全自动头影测量分析

Web-based fully automated cephalometric analysis by deep learning.

作者信息

Kim Hannah, Shim Eungjune, Park Jungeun, Kim Yoon-Ji, Lee Uilyong, Kim Youngjun

机构信息

Center for Bionics, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.

Center for Bionics, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.

出版信息

Comput Methods Programs Biomed. 2020 Oct;194:105513. doi: 10.1016/j.cmpb.2020.105513. Epub 2020 May 6.

Abstract

BACKGROUND AND OBJECTIVE

An accurate lateral cephalometric analysis is vital in orthodontic diagnosis. Identification of anatomic landmarks on lateral cephalograms is tedious, and errors may occur depending on the doctor's experience. Several attempts have been made to reduce this time-consuming process by automating the process through machine learning; however, they only dealt with a small amount of data from one institute. This study aims to develop a fully automated cephalometric analysis method using deep learning and a corresponding web-based application that can be used without high-specification hardware.

METHODS

We built our own dataset comprising 2,075 lateral cephalograms and ground truth positions of 23 landmarks from two institutes and trained a two-stage automated algorithm with a stacked hourglass deep learning model specialized for detecting landmarks in images. Additionally, a web-based application with the proposed algorithm for fully automated cephalometric analysis was developed for better accessibility regardless of the user's computer hardware, which is essential for a deep learning-based method.

RESULTS

The algorithm was evaluated with datasets from various devices and institutes, including a widely used open dataset and achieved 1.37 ± 1.79 mm of point-to-point errors with ground truth positions for 23 cephalometric landmarks. Based on the predicted positions, anatomical types of the subjects were automatically classified and compared with the ground truth, and the automated algorithm achieved a successful classification rate of 88.43%.

CONCLUSIONS

We expect that this fully automated cephalometric analysis algorithm and the web-based application can be widely used in various medical environments to save time and effort for manual marking and diagnosis.

摘要

背景与目的

准确的头影测量分析在正畸诊断中至关重要。在侧位头影测量片上识别解剖标志点很繁琐,且可能因医生经验不同而出现误差。已经进行了几次尝试,通过机器学习自动化来减少这个耗时的过程;然而,它们只处理了来自一个机构的少量数据。本研究旨在开发一种使用深度学习的全自动头影测量分析方法以及一个相应的基于网络的应用程序,该应用程序无需高规格硬件即可使用。

方法

我们构建了自己的数据集,其中包括来自两个机构的2075张侧位头影测量片以及23个标志点的真实位置,并使用专门用于检测图像中标志点的堆叠沙漏深度学习模型训练了一种两阶段自动算法。此外,还开发了一个基于网络的应用程序,该程序采用所提出的算法进行全自动头影测量分析,以提高可及性,无论用户的计算机硬件如何,这对于基于深度学习的方法至关重要。

结果

该算法使用来自各种设备和机构的数据集进行评估,包括一个广泛使用的开放数据集,对于23个头影测量标志点,与真实位置的点对点误差为1.37±1.79毫米。基于预测位置,自动对受试者的解剖类型进行分类并与真实情况进行比较,自动算法的成功分类率达到88.43%。

结论

我们期望这种全自动头影测量分析算法和基于网络的应用程序能够在各种医疗环境中广泛使用,以节省手动标记和诊断的时间和精力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验