Suppr超能文献

利用可穿戴数据的机器学习方法对医护人员感染严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的预测评估

Evaluation of a machine learning approach utilizing wearable data for prediction of SARS-CoV-2 infection in healthcare workers.

作者信息

Hirten Robert P, Tomalin Lewis, Danieletto Matteo, Golden Eddye, Zweig Micol, Kaur Sparshdeep, Helmus Drew, Biello Anthony, Pyzik Renata, Bottinger Erwin P, Keefer Laurie, Charney Dennis, Nadkarni Girish N, Suarez-Farinas Mayte, Fayad Zahi A

机构信息

Department of Medicine, The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Department of Population Health Science and Policy, Center for Biostatistics, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

出版信息

JAMIA Open. 2022 May 18;5(2):ooac041. doi: 10.1093/jamiaopen/ooac041. eCollection 2022 Jul.

Abstract

OBJECTIVE

To determine whether a machine learning model can detect SARS-CoV-2 infection from physiological metrics collected from wearable devices.

MATERIALS AND METHODS

Health care workers from 7 hospitals were enrolled and prospectively followed in a multicenter observational study. Subjects downloaded a custom smart phone app and wore Apple Watches for the duration of the study period. Daily surveys related to symptoms and the diagnosis of Coronavirus Disease 2019 were answered in the app.

RESULTS

We enrolled 407 participants with 49 (12%) having a positive nasal SARS-CoV-2 polymerase chain reaction test during follow-up. We examined 5 machine-learning approaches and found that gradient-boosting machines (GBM) had the most favorable validation performance. Across all testing sets, our GBM model predicted SARS-CoV-2 infection with an average area under the receiver operating characteristic (auROC) = 86.4% (confidence interval [CI] 84-89%). The model was calibrated to value sensitivity over specificity, achieving an average sensitivity of 82% (CI ±∼4%) and specificity of 77% (CI ±∼1%). The most important predictors included parameters describing the circadian heart rate variability mean (MESOR) and peak-timing (acrophase), and age.

DISCUSSION

We show that a tree-based ML algorithm applied to physiological metrics passively collected from a wearable device can identify and predict SARS-CoV-2 infection.

CONCLUSION

Applying machine learning models to the passively collected physiological metrics from wearable devices may improve SARS-CoV-2 screening methods and infection tracking.

摘要

目的

确定机器学习模型能否根据可穿戴设备收集的生理指标检测出新型冠状病毒2019(SARS-CoV-2)感染。

材料与方法

来自7家医院的医护人员参与了一项多中心观察性研究,并进行前瞻性随访。受试者下载了一款定制的智能手机应用程序,并在研究期间佩戴苹果手表。通过该应用程序回答与症状及2019冠状病毒病诊断相关的每日调查问卷。

结果

我们招募了407名参与者,其中49人(12%)在随访期间鼻拭子SARS-CoV-2聚合酶链反应检测呈阳性。我们研究了5种机器学习方法,发现梯度提升机(GBM)具有最良好的验证性能。在所有测试集中,我们的GBM模型预测SARS-CoV-2感染的受试者操作特征曲线下平均面积(auROC)=86.4%(置信区间[CI]84 - 89%)。该模型经校准后更看重敏感性而非特异性,平均敏感性为82%(CI±约4%),特异性为77%(CI±约1%)。最重要的预测因素包括描述昼夜心率变异性均值(MESOR)和峰值时间(相位角)的参数以及年龄。

讨论

我们表明,应用于从可穿戴设备被动收集的生理指标的基于树的机器学习算法能够识别和预测SARS-CoV-2感染。

结论

将机器学习模型应用于从可穿戴设备被动收集的生理指标可能会改进SARS-CoV-2筛查方法和感染追踪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a935/9172622/ad6e0aab7157/ooac041f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验