Hirten Robert P, Tomalin Lewis, Danieletto Matteo, Golden Eddye, Zweig Micol, Kaur Sparshdeep, Helmus Drew, Biello Anthony, Pyzik Renata, Bottinger Erwin P, Keefer Laurie, Charney Dennis, Nadkarni Girish N, Suarez-Farinas Mayte, Fayad Zahi A
Department of Medicine, The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Department of Population Health Science and Policy, Center for Biostatistics, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
JAMIA Open. 2022 May 18;5(2):ooac041. doi: 10.1093/jamiaopen/ooac041. eCollection 2022 Jul.
To determine whether a machine learning model can detect SARS-CoV-2 infection from physiological metrics collected from wearable devices.
Health care workers from 7 hospitals were enrolled and prospectively followed in a multicenter observational study. Subjects downloaded a custom smart phone app and wore Apple Watches for the duration of the study period. Daily surveys related to symptoms and the diagnosis of Coronavirus Disease 2019 were answered in the app.
We enrolled 407 participants with 49 (12%) having a positive nasal SARS-CoV-2 polymerase chain reaction test during follow-up. We examined 5 machine-learning approaches and found that gradient-boosting machines (GBM) had the most favorable validation performance. Across all testing sets, our GBM model predicted SARS-CoV-2 infection with an average area under the receiver operating characteristic (auROC) = 86.4% (confidence interval [CI] 84-89%). The model was calibrated to value sensitivity over specificity, achieving an average sensitivity of 82% (CI ±∼4%) and specificity of 77% (CI ±∼1%). The most important predictors included parameters describing the circadian heart rate variability mean (MESOR) and peak-timing (acrophase), and age.
We show that a tree-based ML algorithm applied to physiological metrics passively collected from a wearable device can identify and predict SARS-CoV-2 infection.
Applying machine learning models to the passively collected physiological metrics from wearable devices may improve SARS-CoV-2 screening methods and infection tracking.
确定机器学习模型能否根据可穿戴设备收集的生理指标检测出新型冠状病毒2019(SARS-CoV-2)感染。
来自7家医院的医护人员参与了一项多中心观察性研究,并进行前瞻性随访。受试者下载了一款定制的智能手机应用程序,并在研究期间佩戴苹果手表。通过该应用程序回答与症状及2019冠状病毒病诊断相关的每日调查问卷。
我们招募了407名参与者,其中49人(12%)在随访期间鼻拭子SARS-CoV-2聚合酶链反应检测呈阳性。我们研究了5种机器学习方法,发现梯度提升机(GBM)具有最良好的验证性能。在所有测试集中,我们的GBM模型预测SARS-CoV-2感染的受试者操作特征曲线下平均面积(auROC)=86.4%(置信区间[CI]84 - 89%)。该模型经校准后更看重敏感性而非特异性,平均敏感性为82%(CI±约4%),特异性为77%(CI±约1%)。最重要的预测因素包括描述昼夜心率变异性均值(MESOR)和峰值时间(相位角)的参数以及年龄。
我们表明,应用于从可穿戴设备被动收集的生理指标的基于树的机器学习算法能够识别和预测SARS-CoV-2感染。
将机器学习模型应用于从可穿戴设备被动收集的生理指标可能会改进SARS-CoV-2筛查方法和感染追踪。