Suppr超能文献

早期新冠疫情期间急诊科患者的临床特征预测 SARS-CoV-2 感染:机器学习方法。

Clinical Features of Emergency Department Patients from Early COVID-19 Pandemic that Predict SARS-CoV-2 Infection: Machine-learning Approach.

机构信息

Baylor Scott & White All Saints Medical Center, Department of Emergency Medicine, Fort Worth, Texas.

National Taiwan University Hospital, Department of Emergency Medicine, Taipei, Taiwan.

出版信息

West J Emerg Med. 2021 Mar 4;22(2):244-251. doi: 10.5811/westjem.2020.12.49370.

Abstract

INTRODUCTION

Within a few months coronavirus disease 2019 (COVID-19) evolved into a pandemic causing millions of cases worldwide, but it remains challenging to diagnose the disease in a timely fashion in the emergency department (ED). In this study we aimed to construct machine-learning (ML) models to predict severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection based on the clinical features of patients visiting an ED during the early COVID-19 pandemic.

METHODS

We retrospectively collected the data of all patients who received reverse transcriptase polymerase chain reaction (RT-PCR) testing for SARS-CoV-2 at the ED of Baylor Scott & White All Saints Medical Center, Fort Worth, from February 23-May 12, 2020. The variables collected included patient demographics, ED triage data, clinical symptoms, and past medical history. The primary outcome was the confirmed diagnosis of COVID-19 (or SARS-CoV-2 infection) by a positive RT-PCR test result for SARS-CoV-2, and was used as the label for ML tasks. We used univariate analyses for feature selection, and variables with P<0.1 were selected for model construction. Samples were split into training and testing cohorts on a 60:40 ratio chronologically. We tried various ML algorithms to construct the best predictive model, and we evaluated performances with the area under the receiver operating characteristic curve (AUC) in the testing cohort.

RESULTS

A total of 580 ED patients were tested for SARS-CoV-2 during the study periods, and 98 (16.9%) were identified as having the SARS-CoV-2 infection based on the RT-PCR results. Univariate analyses selected 21 features for model construction. We assessed three ML methods for performance: of the three methods, random forest outperformed the others with the best AUC result (0.86), followed by gradient boosting (0.83) and extra trees classifier (0.82).

CONCLUSION

This study shows that it is feasible to use ML models as an initial screening tool for identifying patients with SARS-CoV-2 infection. Further validation will be necessary to determine how effectively this prediction model can be used prospectively in clinical practice.

摘要

介绍

在短短几个月内,2019 年冠状病毒病(COVID-19)演变成了一场大流行,在全球范围内导致了数百万人感染,但在急诊科(ED)及时诊断该病仍然具有挑战性。在这项研究中,我们旨在构建机器学习(ML)模型,以根据 COVID-19 大流行早期在 ED 就诊的患者的临床特征预测严重急性呼吸综合征冠状病毒 2 型(SARS-CoV-2)感染。

方法

我们回顾性收集了 2020 年 2 月 23 日至 5 月 12 日在贝勒斯科特和怀特圣徒医疗中心 ED 接受 SARS-CoV-2 逆转录酶聚合酶链反应(RT-PCR)检测的所有患者的数据。收集的变量包括患者人口统计学、ED 分诊数据、临床症状和既往病史。主要结局是通过 SARS-CoV-2 的 RT-PCR 检测结果为阳性来确诊 COVID-19(或 SARS-CoV-2 感染),并作为 ML 任务的标签。我们使用单变量分析进行特征选择,选择 P<0.1 的变量用于模型构建。样本按时间顺序以 60:40 的比例分为训练和测试队列。我们尝试了各种 ML 算法来构建最佳预测模型,并在测试队列中使用接收者操作特征曲线下的面积(AUC)评估性能。

结果

在研究期间,共有 580 名 ED 患者接受了 SARS-CoV-2 检测,根据 RT-PCR 结果,有 98 名(16.9%)被确定为 SARS-CoV-2 感染。单变量分析选择了 21 个特征用于模型构建。我们评估了三种 ML 方法的性能:在这三种方法中,随机森林的表现优于其他方法,具有最佳 AUC 结果(0.86),其次是梯度提升(0.83)和 ExtraTrees 分类器(0.82)。

结论

本研究表明,使用 ML 模型作为识别 SARS-CoV-2 感染患者的初始筛选工具是可行的。需要进一步验证,以确定该预测模型在临床实践中的前瞻性应用效果如何。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6610/7972393/dfa2a9a500fc/wjem-22-244-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验