Faculty of Biology, Johannes Gutenberg University, Biozentrum I, Mainz, Germany.
PLoS One. 2022 Jun 9;17(6):e0269731. doi: 10.1371/journal.pone.0269731. eCollection 2022.
Gene activity is controlled by multiple molecular mechanisms, for instance through transcription factors or by microRNAs (miRNAs), among others. Established bioinformatics tools for the prediction of miRNA target genes face the challenge of ensuring accuracy, due to high false positive rates. Further, these tools present poor overlap. However, we demonstrated that it is possible to filter good predictions of miRNA targets from the bulk of all predictions by using information from the gene regulatory network. Here, we take advantage of this strategy that selects a large subset of predicted microRNA binding sites as more likely to possess less false-positives because of their over-representation in RE1 silencing transcription factor (REST)-regulated genes from the background of TargetScanHuman 7.2 predictions to identify useful features for the prediction of microRNA targets. These enriched miRNA families would have silencing activity for neural transcripts overlapping the repressive activity on neural genes of REST. We analyze properties of associated microRNA binding sites and contrast the outcome to the background. We found that the selected subset presents significant differences respect to the background: (i) lower GC-content in the vicinity of the predicted miRNA binding site, (ii) more target genes with multiple identical microRNA binding sites and (iii) a higher density of predicted microRNA binding sites close to the 3' terminal end of the 3'-UTR. These results suggest that network selection of miRNA-mRNA pairs could provide useful features to improve microRNA target prediction.
基因活性受到多种分子机制的控制,例如转录因子或 microRNA(miRNA)等。用于预测 miRNA 靶基因的既定生物信息学工具由于高假阳性率而面临确保准确性的挑战。此外,这些工具的重叠性较差。然而,我们证明通过使用基因调控网络的信息,可以从大量预测中筛选出 miRNA 靶基因的良好预测。在这里,我们利用这种策略,选择大量预测的 microRNA 结合位点作为更有可能具有较少假阳性的子集,因为它们在 RE1 沉默转录因子(REST)调节基因中的过表达,这些基因来自 TargetScanHuman 7.2 预测的背景,以确定用于预测 microRNA 靶基因的有用特征。这些富集的 miRNA 家族将对重叠 REST 对神经基因抑制活性的神经转录本具有沉默活性。我们分析了相关 microRNA 结合位点的性质,并将结果与背景进行了对比。我们发现,与背景相比,所选子集存在显著差异:(i)在预测的 miRNA 结合位点附近的 GC 含量较低,(ii)具有多个相同 microRNA 结合位点的靶基因更多,以及(iii)靠近 3'-UTR 3'末端的预测 microRNA 结合位点密度更高。这些结果表明,miRNA-mRNA 对的网络选择可以提供有用的特征来改进 microRNA 靶基因预测。