Suppr超能文献

MBSTAR:用于预测微小RNA靶标中特定功能结合位点的多实例学习

MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets.

作者信息

Bandyopadhyay Sanghamitra, Ghosh Dip, Mitra Ramkrishna, Zhao Zhongming

机构信息

Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India.

Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.

出版信息

Sci Rep. 2015 Jan 23;5:8004. doi: 10.1038/srep08004.

Abstract

MicroRNA (miRNA) regulates gene expression by binding to specific sites in the 3'untranslated regions of its target genes. Machine learning based miRNA target prediction algorithms first extract a set of features from potential binding sites (PBSs) in the mRNA and then train a classifier to distinguish targets from non-targets. However, they do not consider whether the PBSs are functional or not, and consequently result in high false positive rates. This substantially affects the follow up functional validation by experiments. We present a novel machine learning based approach, MBSTAR (Multiple instance learning of Binding Sites of miRNA TARgets), for accurate prediction of true or functional miRNA binding sites. Multiple instance learning framework is adopted to handle the lack of information about the actual binding sites in the target mRNAs. Biologically validated 9531 interacting and 973 non-interacting miRNA-mRNA pairs are identified from Tarbase 6.0 and confirmed with PAR-CLIP dataset. It is found that MBSTAR achieves the highest number of binding sites overlapping with PAR-CLIP with maximum F-Score of 0.337. Compared to the other methods, MBSTAR also predicts target mRNAs with highest accuracy. The tool and genome wide predictions are available at http://www.isical.ac.in/~bioinfo_miu/MBStar30.htm.

摘要

微小RNA(miRNA)通过与靶基因3'非翻译区的特定位点结合来调控基因表达。基于机器学习的miRNA靶标预测算法首先从mRNA中的潜在结合位点(PBS)提取一组特征,然后训练一个分类器以区分靶标和非靶标。然而,它们没有考虑PBS是否具有功能,因此导致高假阳性率。这极大地影响了后续的实验功能验证。我们提出了一种基于机器学习的新方法MBSTAR(miRNA靶标的结合位点多实例学习),用于准确预测真实或功能性miRNA结合位点。采用多实例学习框架来处理靶标mRNA中实际结合位点信息的缺乏。从Tarbase 6.0中鉴定出9531对经过生物学验证的相互作用的miRNA-mRNA对和973对非相互作用的miRNA-mRNA对,并用PAR-CLIP数据集进行了确认。发现MBSTAR与PAR-CLIP重叠的结合位点数量最多,最大F值为0.337。与其他方法相比,MBSTAR预测靶标mRNA的准确性也最高。该工具和全基因组预测可在http://www.isical.ac.in/~bioinfo_miu/MBStar30.htm获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04ff/4648438/eb6beb4eaac8/srep08004-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验