Department of Physics, Cornell University, Ithaca, NY 14853.
Materials Science Division, Argonne National Laboratory, Lemont, IL 60439.
Proc Natl Acad Sci U S A. 2022 Jun 14;119(24):e2109665119. doi: 10.1073/pnas.2109665119. Epub 2022 Jun 9.
The information content of crystalline materials becomes astronomical when collective electronic behavior and their fluctuations are taken into account. In the past decade, improvements in source brightness and detector technology at modern X-ray facilities have allowed a dramatically increased fraction of this information to be captured. Now, the primary challenge is to understand and discover scientific principles from big datasets when a comprehensive analysis is beyond human reach. We report the development of an unsupervised machine learning approach, X-ray diffraction (XRD) temperature clustering (X-TEC), that can automatically extract charge density wave order parameters and detect intraunit cell ordering and its fluctuations from a series of high-volume X-ray diffraction measurements taken at multiple temperatures. We benchmark X-TEC with diffraction data on a quasi-skutterudite family of materials, (CaSr[Formula: see text])RhSn, where a quantum critical point is observed as a function of Ca concentration. We apply X-TEC to XRD data on the pyrochlore metal, CdReO, to investigate its two much-debated structural phase transitions and uncover the Goldstone mode accompanying them. We demonstrate how unprecedented atomic-scale knowledge can be gained when human researchers connect the X-TEC results to physical principles. Specifically, we extract from the X-TEC-revealed selection rules that the Cd and Re displacements are approximately equal in amplitude but out of phase. This discovery reveals a previously unknown involvement of [Formula: see text] Re, supporting the idea of an electronic origin to the structural order. Our approach can radically transform XRD experiments by allowing in operando data analysis and enabling researchers to refine experiments by discovering interesting regions of phase space on the fly.
当考虑到集体电子行为及其波动时,晶体材料的信息含量变得非常巨大。在过去的十年中,现代 X 射线设施中光源亮度和探测器技术的改进使得能够捕获更多的信息。现在,主要的挑战是在全面分析超出人类能力范围时,从大数据集中理解和发现科学原理。我们报告了一种无监督机器学习方法的发展,即 X 射线衍射(XRD)温度聚类(X-TEC),它可以自动从在多个温度下采集的大量 X 射线衍射测量中提取电荷密度波序参量,并检测单元内的有序性及其波动。我们使用准 skutterudite 家族材料(CaSr[Formula: see text])RhSn 的衍射数据对 X-TEC 进行了基准测试,在该材料中观察到了一个随 Ca 浓度变化的量子临界点。我们将 X-TEC 应用于 pyrochlore 金属 CdReO 的 XRD 数据,以研究其备受争议的两个结构相变,并揭示伴随它们的 Goldstone 模式。我们展示了当人类研究人员将 X-TEC 结果与物理原理联系起来时,如何获得前所未有的原子尺度的知识。具体来说,我们从 X-TEC 揭示的选择规则中提取出 Cd 和 Re 位移的幅度大致相等但相位不同。这一发现揭示了 [Formula: see text] Re 的先前未知参与,支持了结构有序源于电子的观点。我们的方法可以通过允许实时数据分析,以及通过发现相空间中的有趣区域来实时改进实验,从而彻底改变 XRD 实验。