Kim Gwan In, Jung Joohye, Min Won Kyung, Kim Min Seong, Jung Sujin, Choi Dong Hyun, Chung Jusung, Kim Hyun Jae
School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Display R&D Center, Samsung Display Co., Ltd., 181 Samsung-ro, Tangjeong-myeon, Asan-Si 31454, Republic of Korea.
ACS Appl Mater Interfaces. 2022 Jun 22;14(24):28085-28096. doi: 10.1021/acsami.2c04340. Epub 2022 Jun 9.
To achieve both the synergistic advantages of outstanding flexibility in organic dielectrics and remarkable dielectric/insulating properties in inorganic dielectrics, a plasma-polymerized hafnium oxide (HfO) hybrid (PPH-hybrid) dielectric is proposed. Using a radio-frequency magnetron cosputtering process, the high- HfO dielectric is plasma-polymerized with polytetrafluoroethylene (PTFE), which is a flexible, thermally stable, and hydrophobic fluoropolymer dielectric. The PPH-hybrid dielectric with a high dielectric constant of 14.17 exhibits excellent flexibility, maintaining a leakage current density of ∼10 A/cm even after repetitive bending stress (up to 10000 bending cycles with a radius of 2 mm), whereas the HfO dielectric degrades to be leaky. To evaluate its practical applicability to flexible thin-film transistors (TFTs), the PPH-hybrid dielectric is applied to amorphous indium-gallium-zinc oxide (IGZO) TFTs as a gate dielectric. Consequently, the PPH-hybrid dielectric-based IGZO TFTs exhibit stable electrical performance under the same harsh bending cycles: a field-effect mobility of 16.99 cm/(V s), an on/off current ratio of 1.15 × 10, a subthreshold swing of 0.35 V/dec, and a threshold voltage of 0.96 V (averaged in nine devices). Moreover, the PPH-hybrid dielectric-based IGZO TFTs exhibit a reduced - hysteresis and an enhanced positive bias stress stability, with the threshold voltage shift decreasing from 4.99 to 1.74 V, due to fluorine incorporation. These results demonstrate that PTFE improves both the mechanical durability and electrical stability, indicating that the PPH-hybrid dielectric is a promising candidate for high-performance and low-power flexible electronics.
为了同时实现有机电介质出色的柔韧性以及无机电介质卓越的介电/绝缘性能的协同优势,提出了一种等离子体聚合氧化铪(HfO)混合(PPH混合)电介质。通过射频磁控共溅射工艺,将高介电常数的HfO电介质与聚四氟乙烯(PTFE)进行等离子体聚合,聚四氟乙烯是一种柔性、热稳定且疏水的含氟聚合物电介质。具有14.17高介电常数的PPH混合电介质表现出优异的柔韧性,即使在反复弯曲应力(半径为2毫米的情况下高达10000次弯曲循环)后,漏电流密度仍保持在约10 A/cm²,而HfO电介质则会退化至漏电。为了评估其在柔性薄膜晶体管(TFT)中的实际适用性,将PPH混合电介质用作非晶铟镓锌氧化物(IGZO)TFT的栅极电介质。因此,基于PPH混合电介质的IGZO TFT在相同的苛刻弯曲循环下表现出稳定的电学性能:场效应迁移率为16.99 cm²/(V·s),开/关电流比为1.15×10⁷,亚阈值摆幅为0.35 V/dec,阈值电压为0.96 V(九个器件的平均值)。此外,基于PPH混合电介质的IGZO TFT表现出滞后现象减少以及正偏压应力稳定性增强,由于氟的掺入,阈值电压偏移从4.99 V降至1.74 V。这些结果表明,PTFE提高了机械耐久性和电稳定性,表明PPH混合电介质是高性能和低功耗柔性电子器件的有前途的候选材料。