Wang W, Chen Z-J, Liu X, Cai W, Ma Y, Mu X, Pan X, Hua Z, Hu L, Xu Y, Wang H, Song Y P, Zou X-B, Zou C-L, Sun L
Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, P. R. China.
Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Nat Commun. 2022 Jun 9;13(1):3214. doi: 10.1038/s41467-022-30410-8.
Quantum sensing based on exotic quantum states is appealing for practical metrology applications and fundamental studies. However, these quantum states are vulnerable to noise and the resulting quantum enhancement is weakened in practice. Here, we experimentally demonstrate a quantum-enhanced sensing scheme with a bosonic probe, by exploring the large Hilbert space of the bosonic mode and developing both the approximate quantum error correction and the quantum jump tracking approaches. In a practical radiometry scenario, we attain a 5.3 dB enhancement of sensitivity, which reaches 9.1 × 10 Hz when measuring the excitation population of a receiver mode. Our results demonstrate the potential of quantum sensing with near-term quantum technologies, not only shedding new light on the quantum advantage of sensing, but also stimulating further efforts on bosonic quantum technologies.
基于奇异量子态的量子传感在实际计量应用和基础研究中颇具吸引力。然而,这些量子态易受噪声影响,实际中由此产生的量子增强效应会被削弱。在此,我们通过探索玻色子模式的大希尔伯特空间,并开发近似量子纠错和量子跳跃跟踪方法,实验演示了一种使用玻色子探针的量子增强传感方案。在实际辐射测量场景中,我们实现了灵敏度提高5.3分贝,在测量接收模式的激发粒子数时达到9.1×10赫兹。我们的结果展示了近期量子技术在量子传感方面的潜力,不仅为传感的量子优势带来新见解,也推动了对玻色子量子技术的进一步研究。