Departments of Applied Physics and Physics, Yale University, New Haven, CT, 06511, USA.
Yale Quantum Institute, Yale University, New Haven, CT, 06520, USA.
Nat Commun. 2018 Jan 8;9(1):78. doi: 10.1038/s41467-017-02510-3.
Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.
量子计量学在科学技术中有许多重要的应用,从频率谱学到引力波探测。量子力学对测量精度施加了一个基本限制,称为海森堡极限,对于无噪声的量子系统可以达到,但对于受到噪声影响的系统通常无法达到。在这里,我们研究了如何通过量子纠错来提高测量精度,这是一种保护量子系统免受噪声破坏的通用方法。我们找到了一种在假设存在无噪声辅助系统且可以进行快速、准确的量子处理的情况下,使用受马尔可夫噪声影响的量子探针达到海森堡极限的必要和充分条件。当满足充分条件时,可以构建一个量子纠错码,该码可以在不掩盖信号的情况下抑制噪声;可以通过求解半定规划找到实现最佳精度的最佳代码。