Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
Nat Commun. 2022 Jun 9;13(1):3189. doi: 10.1038/s41467-022-30889-1.
Since antibiotic development lags, we search for potential drug targets through directed evolution experiments. A challenge is that many resistance genes hide in a noisy mutational background as mutator clones emerge in the adaptive population. Here, to overcome this noise, we quantify the impact of mutations through evolutionary action (EA). After sequencing ciprofloxacin or colistin resistance strains grown under different mutational regimes, we find that an elevated sum of the evolutionary action of mutations in a gene identifies known resistance drivers. This EA integration approach also suggests new antibiotic resistance genes which are then shown to provide a fitness advantage in competition experiments. Moreover, EA integration analysis of clinical and environmental isolates of antibiotic resistant of E. coli identifies gene drivers of resistance where a standard approach fails. Together these results inform the genetic basis of de novo colistin resistance and support the robust discovery of phenotype-driving genes via the evolutionary action of genetic perturbations in fitness landscapes.
由于抗生素的研发滞后,我们通过定向进化实验来寻找潜在的药物靶点。一个挑战是,随着适应性群体中突变体克隆的出现,许多耐药基因隐藏在嘈杂的突变背景中。在这里,为了克服这种噪声,我们通过进化作用 (Evolutionary Action, EA) 来量化突变的影响。在对不同突变条件下生长的环丙沙星或多粘菌素耐药菌株进行测序后,我们发现基因中突变的进化作用之和升高,可识别已知的耐药驱动基因。这种 EA 整合方法还提示了新的抗生素耐药基因,随后在竞争实验中证明它们具有适应优势。此外,对临床和环境中分离的具有抗生素耐药性的大肠杆菌的 EA 整合分析,确定了耐药的基因驱动因素,而标准方法则无法做到这一点。这些结果共同说明了从头开始的多粘菌素耐药的遗传基础,并通过在适应度景观中对遗传扰动的进化作用来支持稳健地发现表型驱动基因。