Suppr超能文献

医疗保健领域人工智能的报销框架。

A reimbursement framework for artificial intelligence in healthcare.

作者信息

Abràmoff Michael D, Roehrenbeck Cybil, Trujillo Sylvia, Goldstein Juli, Graves Anitra S, Repka Michael X, Silva Iii Ezequiel Zeke

机构信息

Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.

AI Healthcare Coalition, Washington, DC, USA.

出版信息

NPJ Digit Med. 2022 Jun 9;5(1):72. doi: 10.1038/s41746-022-00621-w.

Abstract

Responsible adoption of healthcare artificial intelligence (AI) requires that AI systems which benefit patients and populations, including autonomous AI systems, are incentivized financially at a consistent and sustainable level. We present a framework for analytically determining value and cost of each unique AI service. The framework’s processes involve affected stakeholders, including patients, providers, legislators, payors, and AI creators, in order to find an optimum balance among ethics, workflow, cost, and value as identified by each of these stakeholders. We use a real world, completed, an example of a specific autonomous AI service, to show how multiple “guardrails” for the AI system implementation enforce ethical principles. It can guide the development of sustainable reimbursement for future AI services, ensuring the quality of care, healthcare equity, and mitigation of potential bias, and thereby contribute to realize the potential of AI to improve clinical outcomes for patients and populations, improve access, remove disparities, and reduce cost.

摘要

负责任地采用医疗保健人工智能(AI)要求,包括自主AI系统在内的、能使患者和人群受益的AI系统,在财务上能得到持续且稳定的激励。我们提出了一个用于分析确定每项独特AI服务的价值和成本的框架。该框架的流程涉及包括患者、提供者、立法者、付款方和AI创造者在内的受影响利益相关者,以便在这些利益相关者各自确定的伦理、工作流程、成本和价值之间找到最佳平衡。我们使用一个实际完成的特定自主AI服务的例子,来展示AI系统实施的多个“防护栏”如何执行伦理原则。它可以指导未来AI服务可持续报销的发展,确保医疗质量、医疗公平性并减轻潜在偏差,从而有助于实现AI改善患者和人群临床结局、改善可及性、消除差异和降低成本的潜力。

相似文献

4
Stakeholders' Requirements for Artificial Intelligence for Healthcare in Korea.韩国医疗保健领域人工智能的利益相关者需求
Healthc Inform Res. 2022 Apr;28(2):143-151. doi: 10.4258/hir.2022.28.2.143. Epub 2022 Apr 30.
6
Artificial Intelligence: Threat or Boon to Radiologists?人工智能:对放射科医生来说是威胁还是福音?
J Am Coll Radiol. 2017 Nov;14(11):1476-1480. doi: 10.1016/j.jacr.2017.07.007. Epub 2017 Aug 19.
9
Explainable Artificial Intelligence for Predictive Modeling in Healthcare.用于医疗保健预测建模的可解释人工智能
J Healthc Inform Res. 2022 Feb 11;6(2):228-239. doi: 10.1007/s41666-022-00114-1. eCollection 2022 Jun.

引用本文的文献

6

本文引用的文献

2
Foundational Considerations for Artificial Intelligence Using Ophthalmic Images.利用眼科图像的人工智能基础考量。
Ophthalmology. 2022 Feb;129(2):e14-e32. doi: 10.1016/j.ophtha.2021.08.023. Epub 2021 Aug 31.
3
Who Will Pay for AI?谁将为人工智能买单?
Radiol Artif Intell. 2021 Mar 3;3(3):e210030. doi: 10.1148/ryai.2021210030. eCollection 2021 May.
7
Approaching autonomy in medical artificial intelligence.迈向医学人工智能的自主性
Lancet Digit Health. 2020 Sep;2(9):e447-e449. doi: 10.1016/S2589-7500(20)30187-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验