Chongqing Climate Center, Chongqing 401147, China.
National Climate Center of China Meteorological Administration (CMA), Beijing 100081, China.
Int J Environ Res Public Health. 2022 May 24;19(11):6398. doi: 10.3390/ijerph19116398.
This study assesses present-day extreme climate changes over China by using a set of phase 6 of the Coupled Model Intercomparison Project (CMIP6) statistical downscaled data and raw models outputs. The downscaled data is produced by the adapted spatial disaggregation and equal distance cumulative distribution function (EDCDF) method at the resolution of 0.25° × 0.25° for the present day (1961-2014) and the future period (2015-2100) under the Shared Socioeconomic Path-way (SSP) 2-4.5 than SSP5-8.5 emission scenario. The results show that the downscaling method improves the spatial distributions of extreme climate events in China with higher spatial pattern correlations, Taylor Skill Scores and closer magnitudes no matter single model or multi model ensemble (MME). In the future projections, large inter-model variability between the downscaled models still exists, particular for maximum consecutive 5-day precipitation (RX5). The downscaled MME projects that total precipitation (PTOT) and RX5, will increase with time, especially for the northwest China. The projected heavy precipitation days (R20) also increase in the future. The region of significant increase in R20 locates in the south of river Yangtze. Maxi-mum annual temperature (TXX) and percentage of warm days (TX90p) are projected to increase across the whole country with larger magnitude over the west China. Projected changes of minimum annual temperature (TNN) over the northeastern China is the most significant area. The higher of the emission scenario, the more significant of extreme climates. This reveals that the spatial distribution of extreme climate events will become more uneven in the future.
本研究通过使用一组第六阶段耦合模式比较计划(CMIP6)统计降尺度数据和原始模型输出,评估中国当前的极端气候变化。降尺度数据是通过适应的空间离散化和等距离累积分布函数(EDCDF)方法生成的,分辨率为 0.25°×0.25°,用于当前时期(1961-2014 年)和未来时期(2015-2100 年),在共享社会经济途径(SSP)2-4.5 比 SSP5-8.5 排放情景下。结果表明,无论单个模型还是多模式集合(MME),降尺度方法都提高了中国极端气候事件的空间分布,具有更高的空间模式相关性、泰勒技能得分和更接近的幅度。在未来预测中,降尺度模型之间仍然存在很大的模型间可变性,特别是对于最大连续 5 天降水(RX5)。降尺度 MME 预测,总降水量(PTOT)和 RX5 将随时间增加,特别是在中国西北部。未来预计强降水日数(R20)也会增加。R20 显著增加的区域位于长江以南。最大年平均温度(TXX)和温暖日数百分比(TX90p)预计将在全国范围内增加,西部地区增幅更大。中国东北地区最低年平均温度(TNN)的预测变化是最显著的区域。排放情景越高,极端气候的变化越显著。这表明,未来极端气候事件的空间分布将变得更加不均匀。