Hussain Zahid, Sultan Nawab, Ali Murad, Naz Muhammad Yasin, AbdEl-Salam Nasser M, Ibrahim Khalid Aref
Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan.
ACS Omega. 2020 Jul 13;5(29):18114-18122. doi: 10.1021/acsomega.0c01680. eCollection 2020 Jul 28.
The objective of the presented work was to convert waste glass and mollusk shells into a porous material for separation of the direct blue 15 azo dye from industrial wastewater. The porous glass material of specific pore size and surface area was prepared through a thermochemical reaction by reacting waste glass with mollusk shells, soda, and rock salt. The optimal reaction conditions were determined by adjusting the reaction time, reaction temperature, and relative amount of the reactants. The surface morphology, elemental composition, and functional groups of the material were studied through scanning electron microscopy (SEM), X-ray florescence spectroscopy (XRF), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FT-IR). Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) methods were used to determine the pore size distribution and surface area of the porous material. The material consisted of different types of flakes, oval-shaped particles, and granules. In addition to the functionalized char, the porous material contained Si-O-Si, Si-O-Al, and Si-OH groups. Relatively better yield and pore size distribution were obtained at a reaction temperature of 800 °C and reaction time of 90 min. The fully characterized material was used to separate the blue dye from industrial wastewater. This porous material absorbed about 2.66 mg/g blue dye from wastewater after 20 min of treatment time. The adsorption data fit the Freundlich isotherm better than the Langmuir isotherm. The correlation coefficient of Freundlich isotherm varied from 0.93 to 0.98, which was slightly higher than the correlation coefficient of Langmuir isotherm.
本研究的目的是将废玻璃和软体动物壳转化为一种多孔材料,用于从工业废水中分离直接蓝15偶氮染料。通过使废玻璃与软体动物壳、苏打和岩盐进行热化学反应,制备了具有特定孔径和表面积的多孔玻璃材料。通过调整反应时间、反应温度和反应物的相对量来确定最佳反应条件。通过扫描电子显微镜(SEM)、X射线荧光光谱(XRF)、能量色散X射线光谱(EDX)和傅里叶变换红外光谱(FT-IR)研究了该材料的表面形态、元素组成和官能团。采用巴雷特-乔伊纳-哈伦达(BJH)法和布鲁诺尔-埃米特-泰勒(BET)法测定了多孔材料的孔径分布和表面积。该材料由不同类型的薄片、椭圆形颗粒和颗粒组成。除了功能化炭外,多孔材料还含有Si-O-Si、Si-O-Al和Si-OH基团。在反应温度为800℃、反应时间为90分钟时,获得了相对较好的产率和孔径分布。对该材料进行了全面表征后,用于从工业废水中分离蓝色染料。处理20分钟后,这种多孔材料从废水中吸附了约2.66 mg/g的蓝色染料。吸附数据符合弗伦德利希等温线,比朗缪尔等温线拟合得更好。弗伦德利希等温线的相关系数在0.93至0.98之间,略高于朗缪尔等温线的相关系数。
Adv Colloid Interface Sci. 2013-12-26
Spectrochim Acta A Mol Biomol Spectrosc. 2018-3-15
Water Sci Technol. 2010
Materials (Basel). 2022-8-23
Colloids Surf B Biointerfaces. 2014-4-1
ACS Appl Mater Interfaces. 2012-10-24
Materials (Basel). 2022-8-23
Chem Soc Rev. 2019-9-16
ACS Omega. 2017-8-31
Environ Sci Pollut Res Int. 2017-7-8
Quat Geochronol. 2008-2
J Hazard Mater. 2009-8-30