文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Review of Photothermal Technique for Thermal Measurement of Micro-/Nanomaterials.

作者信息

Zhou Jianjun, Xu Shen, Liu Jing

机构信息

School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.

College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518116, China.

出版信息

Nanomaterials (Basel). 2022 May 31;12(11):1884. doi: 10.3390/nano12111884.


DOI:10.3390/nano12111884
PMID:35683739
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9182306/
Abstract

The extremely small size of micro-/nanomaterials limits the application of conventional thermal measurement methods using a contact heating source or probing sensor. Therefore, non-contact thermal measurement methods are preferable in micro-/nanoscale thermal characterization. In this review, one of the non-contact thermal measurement methods, photothermal (PT) technique based on thermal radiation, is introduced. When subjected to laser heating with controllable modulation frequencies, surface thermal radiation carries fruitful information for thermal property determination. As thermal properties are closely related to the internal structure of materials, for micro-/nanomaterials, PT technique can measure not only thermal properties but also features in the micro-/nanostructure. Practical applications of PT technique in the thermal measurement of micro-/nanomaterials are then reviewed, including special wall-structure investigation in multiwall carbon nanotubes, porosity determination in nanomaterial assemblies, and the observation of amorphous/crystalline structure transformation in proteins in heat treatment. Furthermore, the limitations and future application extensions are discussed.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06da/9182306/75e34b4fc5f0/nanomaterials-12-01884-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06da/9182306/b0ea92dbae71/nanomaterials-12-01884-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06da/9182306/e96f0dd3f6e6/nanomaterials-12-01884-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06da/9182306/0f242d7165c8/nanomaterials-12-01884-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06da/9182306/75e34b4fc5f0/nanomaterials-12-01884-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06da/9182306/b0ea92dbae71/nanomaterials-12-01884-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06da/9182306/e96f0dd3f6e6/nanomaterials-12-01884-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06da/9182306/0f242d7165c8/nanomaterials-12-01884-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06da/9182306/75e34b4fc5f0/nanomaterials-12-01884-g004.jpg

相似文献

[1]
Review of Photothermal Technique for Thermal Measurement of Micro-/Nanomaterials.

Nanomaterials (Basel). 2022-5-31

[2]
Non-thermal radiation heating synthesis of nanomaterials.

Sci Bull (Beijing). 2021-2-26

[3]
Non-contact T-type Raman method for measurement of thermophysical properties of micro-/nanowires.

Rev Sci Instrum. 2019-4

[4]
Laser Synthesis and Microfabrication of Micro/Nanostructured Materials Toward Energy Conversion and Storage.

Nanomicro Lett. 2021-1-4

[5]
Scanning thermal microscopy with heat conductive nanowire probes.

Ultramicroscopy. 2016-3

[6]
Photothermal Nanomaterials: A Powerful Light-to-Heat Converter.

Chem Rev. 2023-6-14

[7]
Measurement of thermal properties of thin films up to high temperatures--pulsed photothermal radiometry system and Si-B-C-N films.

Rev Sci Instrum. 2010-12

[8]
Micro-Nanomaterials for Tumor Microwave Hyperthermia: Design, Preparation, and Application.

Curr Drug Deliv. 2017

[9]
A micro-pipette thermal sensing technique for measuring the thermal conductivity of non-volatile fluids.

Rev Sci Instrum. 2018-11

[10]
Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method.

Rev Sci Instrum. 2010-11

引用本文的文献

[1]
Development of non-contact foreign body imaging base on photoacoustic signal intensity measurement.

J Appl Clin Med Phys. 2024-5

[2]
Perspectives on Energy Transport at the Micro/Nanoscale.

Nanomaterials (Basel). 2023-5-26

本文引用的文献

[1]
Very fast hot carrier diffusion in unconstrained MoS on a glass substrate: discovered by picosecond ET-Raman.

RSC Adv. 2018-4-3

[2]
Direct Characterization of Thermal Nonequilibrium between Optical and Acoustic Phonons in Graphene Paper under Photon Excitation.

Adv Sci (Weinh). 2021-5-1

[3]
The in-plane structure domain size of nm-thick MoSe uncovered by low-momentum phonon scattering.

Nanoscale. 2021-4-30

[4]
Effect of temperature on Raman intensity of nm-thick WS: combined effects of resonance Raman, optical properties, and interface optical interference.

Nanoscale. 2020-3-12

[5]
Measurement of the thermal conductivities of suspended MoS and MoSe by nanosecond ET-Raman without temperature calibration and laser absorption evaluation.

Nanoscale. 2018-12-13

[6]
Nonmonotonic thickness-dependence of in-plane thermal conductivity of few-layered MoS: 2.4 to 37.8 nm.

Phys Chem Chem Phys. 2018-10-17

[7]
The hot carrier diffusion coefficient of sub-10 nm virgin MoS: uncovered by non-contact optical probing.

Nanoscale. 2017-5-25

[8]
Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement.

Opt Lett. 2016-1-1

[9]
Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique.

ACS Appl Mater Interfaces. 2015-11-10

[10]
Development of time-domain differential Raman for transient thermal probing of materials.

Opt Express. 2015-4-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索