少层 MoS:2.4 至 37.8nm 平面热导率的非单调厚度依赖性。
Nonmonotonic thickness-dependence of in-plane thermal conductivity of few-layered MoS: 2.4 to 37.8 nm.
机构信息
Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
出版信息
Phys Chem Chem Phys. 2018 Oct 17;20(40):25752-25761. doi: 10.1039/c8cp02858c.
Recent first-principles modeling reported a decrease of in-plane thermal conductivity (k) with increased thickness for few layered MoS2, which results from the change in phonon dispersion and missing symmetry in the anharmonic atomic force constant. For other 2D materials, it has been well documented that a higher thickness could cause a higher in-plane k due to a lower density of surface disorder. However, the effect of thickness on the k of MoS2 has not been systematically uncovered by experiments. In addition, from either experimental or theoretical approaches, the in-plane k value of tens-of-nm-thick MoS2 is still missing, which makes the physics on the thickness-dependent k remain ambiguous. In this work, we measure the k of few-layered (FL) MoS2 with thickness spanning a large range: 2.4 nm to 37.8 nm. A novel five energy transport state-resolved Raman (ET-Raman) method is developed for the measurement. For the first time, the critical effects of hot carrier diffusion, electron-hole recombination, and energy coupling with phonons are taken into consideration when determining the k of FL MoS2. By eliminating the use of laser energy absorption data and Raman temperature calibration, unprecedented data confidence is achieved. A nonmonotonic thickness-dependent k trend is discovered. k decreases from 60.3 W m-1 K-1 (2.4 nm thick) to 31.0 W m-1 K-1 (9.2 nm thick), and then increases to 76.2 W m-1 K-1 (37.8 nm thick), which is close to the reported k of bulk MoS2. This nonmonotonic behavior is analyzed in detail and attributed to the change of phonon dispersion for very thin MoS2 and a reduced surface scattering effect for thicker samples.
最近的第一性原理模型研究表明,对于少层 MoS2,层厚的增加会导致面内热导率(k)降低,这是由于声子色散和非谐原子力常数的对称性缺失所致。对于其他二维材料,已有大量文献报道,由于表面无序度较低,较高的厚度会导致更高的面内热导率(k)。然而,实验尚未系统地揭示厚度对 MoS2 的 k 的影响。此外,无论是从实验还是理论方法来看,几十纳米厚的 MoS2 的面内热导率(k)值仍然缺失,这使得厚度依赖 k 的物理性质仍不清楚。在这项工作中,我们测量了厚度范围较大的少层(FL)MoS2 的 k:2.4nm 至 37.8nm。我们开发了一种新颖的五能量输运状态分辨拉曼(ET-Raman)方法来进行测量。首次在确定 FL MoS2 的 k 时,考虑了热载流子扩散、电子-空穴复合以及与声子的能量耦合的关键影响。通过消除对激光能量吸收数据和拉曼温度校准的使用,实现了前所未有的数据置信度。我们发现了一个非单调的厚度依赖的 k 趋势。k 值从 60.3 W m-1 K-1(2.4nm 厚)降低到 31.0 W m-1 K-1(9.2nm 厚),然后增加到 76.2 W m-1 K-1(37.8nm 厚),接近于块状 MoS2 的报道值。我们详细分析了这种非单调行为,并将其归因于非常薄的 MoS2 的声子色散变化和较厚样品的表面散射效应降低。