文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用安第斯蓝莓提取物合成铁、锌和锰纳米肥料及其对甘蓝和羽扇豆植物生长的影响。

Synthesis of Iron, Zinc, and Manganese Nanofertilizers, Using Andean Blueberry Extract, and Their Effect in the Growth of Cabbage and Lupin Plants.

作者信息

Murgueitio-Herrera Erika, Falconí César E, Cumbal Luis, Gómez Josselyn, Yanchatipán Karina, Tapia Alejandro, Martínez Kevin, Sinde-Gonzalez Izar, Toulkeridis Theofilos

机构信息

Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí P.O. Box 171-5-231B, Ecuador.

Departamento de Ciencias de la Tierra y de la Construcción, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí P.O. Box 171-5-231B, Ecuador.

出版信息

Nanomaterials (Basel). 2022 Jun 4;12(11):1921. doi: 10.3390/nano12111921.


DOI:10.3390/nano12111921
PMID:35683776
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9182584/
Abstract

The predominant aim of the current study was to synthesize the nanofertilizer nanoparticles ZnO_MnO-NPs and FeO_ZnO-NPs using Andean blueberry extract and determine the effect of NPs in the growth promotion of cabbage () and Andean lupin ( sweet) crops. The nanoparticles were analyzed by visible spectrophotometry, size distribution (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Solutions of nanoparticle concentrations were applied to cabbage, with solutions of 270 and 540 ppm of ZnO_MnO-NPs and 270 and 540 ppm of FeO_ZnO-NPs applied to Andean lupin. Zinc was used in both plants to take advantage of its beneficial properties for plant growth. Foliar NPs sprays were applied at the phenological stage of vegetative growth of the cabbage or Andean lupin plants grown under greenhouse conditions. The diameter of the NPs was 9.5 nm for ZnO, 7.8 nm for FeO, and 10.5 nm for MnO, which facilitate the adsorption of NPs by the stomata of plants. In Andean lupin, treatment with 270 ppm of iron and zinc indicated increases of 6% in height, 19% in root size, 3.5% in chlorophyll content index, and 300% in leaf area, while treatment with 540 ppm of iron and zinc yielded no apparent increases in any variable. In cabbage, the ZnO_MnO-NPs indicate, at a concentration of 270 ppm, increases of 10.3% in root size, 55.1% in dry biomass, 7.1% in chlorophyll content, and 25.6% in leaf area. Cabbage plants treated at a concentration of 540 ppm produced increases of 1.3% in root size and 1.8% in chlorophyll content, compared to the control, which was sprayed with distilled water. Therefore, the spray application of nanofertilizers at 270 ppm indicated an important improvement in both plants' growth.

摘要

本研究的主要目的是利用安第斯蓝莓提取物合成纳米肥料纳米颗粒ZnO_MnO-NPs和FeO_ZnO-NPs,并确定这些纳米颗粒对甘蓝()和安第斯羽扇豆(甜)作物生长促进的影响。通过可见分光光度法、尺寸分布(动态光散射)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对纳米颗粒进行分析。将纳米颗粒浓度溶液施用于甘蓝,将270和540 ppm的ZnO_MnO-NPs溶液以及270和540 ppm的FeO_ZnO-NPs溶液施用于安第斯羽扇豆。两种植物都使用了锌,以利用其对植物生长的有益特性。在温室条件下生长的甘蓝或安第斯羽扇豆植物营养生长的物候期进行叶面纳米颗粒喷雾。ZnO的纳米颗粒直径为9.5 nm,FeO为7.8 nm,MnO为10.5 nm,这有利于植物气孔对纳米颗粒的吸附。在安第斯羽扇豆中,用270 ppm的铁和锌处理表明,株高增加6%,根大小增加19%,叶绿素含量指数增加3.5%,叶面积增加300%,而用540 ppm铁和锌处理在任何变量上均未产生明显增加。在甘蓝中,270 ppm浓度的ZnO_MnO-NPs表明,根大小增加10.3%,干生物量增加55.1%,叶绿素含量增加7.1%,叶面积增加25.6%。与用蒸馏水喷雾的对照相比,540 ppm浓度处理的甘蓝植株根大小增加1.3%,叶绿素含量增加1.8%。因此,270 ppm的纳米肥料喷雾施用表明两种植物的生长都有显著改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/430a04ccdc3d/nanomaterials-12-01921-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/cdde95d29b8e/nanomaterials-12-01921-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/80234752c6d5/nanomaterials-12-01921-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/b785f91a6cbd/nanomaterials-12-01921-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/b275e19cf758/nanomaterials-12-01921-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/3e5aff3a4393/nanomaterials-12-01921-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/c816638d3bfb/nanomaterials-12-01921-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/430a04ccdc3d/nanomaterials-12-01921-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/cdde95d29b8e/nanomaterials-12-01921-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/80234752c6d5/nanomaterials-12-01921-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/b785f91a6cbd/nanomaterials-12-01921-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/b275e19cf758/nanomaterials-12-01921-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/3e5aff3a4393/nanomaterials-12-01921-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/c816638d3bfb/nanomaterials-12-01921-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/9182584/430a04ccdc3d/nanomaterials-12-01921-g007.jpg

相似文献

[1]
Synthesis of Iron, Zinc, and Manganese Nanofertilizers, Using Andean Blueberry Extract, and Their Effect in the Growth of Cabbage and Lupin Plants.

Nanomaterials (Basel). 2022-6-4

[2]
Effect of zinc oxide nanoparticles synthesized from leaf extract on growth and antioxidant properties of mustard ().

Front Plant Sci. 2023-1-23

[3]
Development and Evaluation of Zinc and Iron Nanoparticles Functionalized with Plant Growth-Promoting Rhizobacteria (PGPR) and Microalgae for Their Application as Bio-Nanofertilizers.

Plants (Basel). 2023-10-23

[4]
ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant.

Recent Pat Food Nutr Agric. 2013-12

[5]
Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants.

Plant Physiol Biochem. 2018-12-10

[6]
Deciphering the fertilizing and disease suppression potential of phytofabricated zinc oxide nanoparticles on Brassicajuncea.

Environ Res. 2023-8-15

[7]
Biosynthesis of ZnO and TiO nanoparticles using Ipomoea carnea leaf extract and its effect on black carrot (Daucus carota L.) cv. Pusa Asita.

Plant Physiol Biochem. 2023-9

[8]
Biosynthesis of ZnO Nanoparticles Using : Characterization and Nutritive Significance for Promoting Plant Growth in L.

Dose Response. 2020-9-14

[9]
Template-free microwave-assisted hydrothermal synthesis of manganese zinc ferrite as a nanofertilizer for squash plant ().

Heliyon. 2020-3-21

[10]
Zinc Oxide Nanoparticles Enhanced Biomass and Zinc Content and Induced Changes in Biological Properties of Red .

Materials (Basel). 2021-10-18

引用本文的文献

[1]
Identifying the Phytotoxicity of Biosynthesized Metal Oxide Nanoparticles and Their Impact on Antioxidative Enzymatic Activity in Maize Under Drought Stress.

Plants (Basel). 2025-4-1

[2]
Effect of Selenium, Copper and Manganese Nanocomposites in Arabinogalactan Matrix on Potato Colonization by Phytopathogens and .

Plants (Basel). 2024-12-14

[3]
Green Synthesis of Metal Nanoparticles with Borojó () Extracts and Their Application in As Removal in Water Matrix.

Nanomaterials (Basel). 2024-9-20

[4]
RNA-seq reveals the gene expression in patterns in Populus × euramericana 'Neva' plantation under different precision water and fertilizer-intensive management.

BMC Plant Biol. 2024-8-9

[5]
Unlocking the Potential of Nano-Enabled Precision Agriculture for Efficient and Sustainable Farming.

Plants (Basel). 2023-11-1

[6]
Nano-Biofertilizer Formulations for Agriculture: A Systematic Review on Recent Advances and Prospective Applications.

Bioengineering (Basel). 2023-8-25

[7]
Improving Dietary Zinc Bioavailability Using New Food Fortification Approaches: A Promising Tool to Boost Immunity in the Light of COVID-19.

Biology (Basel). 2023-3-29

本文引用的文献

[1]
Available Strategies for the Management of Andean Lupin Anthracnose.

Plants (Basel). 2022-2-28

[2]
Manganese Oxide Nanoparticles as Safer Seed Priming Agent to Improve Chlorophyll and Antioxidant Profiles in Watermelon Seedlings.

Nanomaterials (Basel). 2021-4-15

[3]
Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits.

Glob Chang Biol. 2021-4

[4]
Bacillus subtilis CtpxS2-1 induces systemic resistance against anthracnose in Andean lupin by lipopeptide production.

Biotechnol Lett. 2021-3

[5]
Agriculture, dairy and fishery farming practices and greenhouse gas emission footprint: a strategic appraisal for mitigation.

Environ Sci Pollut Res Int. 2020-2-14

[6]
Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles.

NPJ Sci Food. 2017-11-20

[7]
Preparation of ZnO Nanoparticles with High Dispersibility Based on Oriented Attachment (OA) Process.

Nanoscale Res Lett. 2019-6-20

[8]
Characteristics and Applications of Sugar Cane Bagasse Ash Waste in Cementitious Materials.

Materials (Basel). 2018-12-22

[9]
Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities.

J Sci Food Agric. 2018-2

[10]
New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications.

Environ Sci Pollut Res Int. 2017-8-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索