Liu Qiankun, Benedikovic Daniel, Smy Tom, Atieh Ahmad, Cheben Pavel, Ye Winnie N
Department of Electronics, Carleton University, Ottawa, ON K1S 5B6, Canada.
Department of Multimedia and Information-Communication Technologies, University of Zilina, 010 26 Zilina, Slovakia.
Nanomaterials (Basel). 2022 Jun 6;12(11):1938. doi: 10.3390/nano12111938.
On-chip optical phased arrays (OPAs) are the enabling technology for diverse applications, ranging from optical interconnects to metrology and light detection and ranging (LIDAR). To meet the required performance demands, OPAs need to achieve a narrow beam width and wide-angle steering, along with efficient sidelobe suppression. A typical OPA configuration consists of either one-dimensional (1D) linear or two-dimensional (2D) rectangular arrays. However, the presence of grating sidelobes from these array configurations in the far-field pattern limits the aliasing-free beam steering, when the antenna element spacing is larger than half of a wavelength. In this work, we provide numerical analysis for 2D circular OPAs with radially arranged nano-antennas. The circular array geometry is shown to effectively suppress the grating lobes, expand the range for beam steering and obtain narrower beamwidths, while increasing element spacing to about 10 μm. To allow for high coupling efficiency, we propose the use of a central circular grating coupler to feed the designed circular OPA. Leveraging radially positioned nano-antennas and an efficient central grating coupler, our design can yield an aliasing-free azimuthal field of view (FOV) of 360°, while the elevation angle FOV is limited by the far-field beamwidth of the nano-antenna element and its array arrangement. With a main-to-sidelobe contrast ratio of 10 dB, a 110-element OPA offers an elevation FOV of 5° and an angular beamwidth of 1.14°, while an 870-element array provides an elevation FOV up to 20° with an angular beamwidth of 0.35°. Our analysis suggests that the performance of the circular OPAs can be further improved by integrating more elements, achieving larger aliasing-free FOV and narrower beamwidths. Our proposed design paves a new way for the development of on-chip OPAs with large 2D beam steering and high resolutions in communications and LIDAR systems.
片上光学相控阵(OPA)是实现多种应用的 enabling 技术,涵盖从光互连到计量以及光探测和测距(LIDAR)等领域。为满足所需的性能要求,OPA 需要实现窄波束宽度和广角转向,同时具备有效的旁瓣抑制能力。典型的 OPA 配置由一维(1D)线性阵列或二维(2D)矩形阵列组成。然而,当天线元件间距大于波长的一半时,这些阵列配置在远场方向图中产生的光栅旁瓣会限制无混叠波束转向。在这项工作中,我们对具有径向排列纳米天线的二维圆形 OPA 进行了数值分析。结果表明,圆形阵列几何结构能够有效抑制光栅瓣,扩大波束转向范围并获得更窄的波束宽度,同时将元件间距增加到约 10μm。为实现高耦合效率,我们建议使用中央圆形光栅耦合器为设计的圆形 OPA 馈电。利用径向定位的纳米天线和高效的中央光栅耦合器,我们的设计能够产生 360°的无混叠方位视场(FOV),而仰角视场则受纳米天线元件的远场波束宽度及其阵列排列的限制。对于主旁瓣对比度为 10dB 的情况,一个 110 元件的 OPA 提供 5°的仰角视场和 1.14°的角波束宽度,而一个 870 元件的阵列提供高达 20°的仰角视场和 0.35°的角波束宽度。我们的分析表明,通过集成更多元件、实现更大的无混叠视场和更窄的波束宽度,可以进一步提高圆形 OPA 的性能。我们提出的设计为在通信和 LIDAR 系统中开发具有大二维波束转向和高分辨率的片上 OPA 开辟了一条新途径。