Suppr超能文献

一种用于监测近海养殖网箱水质的低成本人工智能浮标系统。

A Low-Cost AI Buoy System for Monitoring Water Quality at Offshore Aquaculture Cages.

机构信息

Department of Electrical Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan.

Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan.

出版信息

Sensors (Basel). 2022 May 27;22(11):4078. doi: 10.3390/s22114078.

Abstract

The ocean resources have been rapidly depleted in the recent decade, and the complementary role of aquaculture to food security has become more critical than ever before. Water quality is one of the key factors in determining the success of aquaculture and real-time water quality monitoring is an important process for aquaculture. This paper proposes a low-cost and easy-to-build artificial intelligence (AI) buoy system that autonomously measures the related water quality data and instantly forwards them via wireless channels to the shore server. Furthermore, the data provide aquaculture staff with real-time water quality information and also assists server-side AI programs in implementing machine learning techniques to further provide short-term water quality predictions. In particular, we aim to provide a low-cost design by combining simple electronic devices and server-side AI programs for the proposed buoy system to measure water velocity. As a result, the cost for the practical implementation is approximately USD 2015 only to facilitate the proposed AI buoy system to measure the real-time data of dissolved oxygen, salinity, water temperature, and velocity. In addition, the AI buoy system also offers short-term estimations of water temperature and velocity, with mean square errors of 0.021 °C and 0.92 cm/s, respectively. Furthermore, we replaced the use of expensive current meters with a flow sensor tube of only USD 100 to measure water velocity.

摘要

近十年来,海洋资源迅速枯竭,水产养殖对粮食安全的补充作用比以往任何时候都更加关键。水质是决定水产养殖成功与否的关键因素之一,实时水质监测是水产养殖的重要过程。本文提出了一种低成本、易于构建的人工智能(AI)浮标系统,该系统可自主测量相关水质数据,并通过无线信道即时将数据转发到岸基服务器。此外,这些数据为水产养殖人员提供实时水质信息,并协助服务器端 AI 程序实施机器学习技术,进一步提供短期水质预测。特别是,我们旨在通过结合简单的电子设备和服务器端 AI 程序为所提出的浮标系统提供低成本设计,以测量水速。因此,实际实施的成本仅约为 2015 美元,以促进所提出的 AI 浮标系统测量溶解氧、盐度、水温以及流速的实时数据。此外,AI 浮标系统还可以对水温与水速进行短期估计,其水温与水速的均方误差分别为 0.021°C 和 0.92cm/s。此外,我们还使用价格仅为 100 美元的流量传感器管代替昂贵的海流计来测量水速。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a52/9185509/e831ed3b633e/sensors-22-04078-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验