Laboratoire d'Informatique et Systèmes, Aix-Marseille University, 163 Avenue de Luminy, CEDEX 09, 13288 Marseille, France.
Centre de Recherche en Cancerologie de Marseille (CRCM), 27 Boulevard Lei Roure, 13009 Marseille, France.
Sensors (Basel). 2021 Jun 10;21(12):3999. doi: 10.3390/s21123999.
The early detection of melanoma is the most efficient way to reduce its mortality rate. Dermatologists achieve this task with the help of dermoscopy, a non-invasive tool allowing the visualization of patterns of skin lesions. Computer-aided diagnosis (CAD) systems developed on dermoscopic images are needed to assist dermatologists. These systems rely mainly on multiclass classification approaches. However, the multiclass classification of skin lesions by an automated system remains a challenging task. Decomposing a multiclass problem into a binary problem can reduce the complexity of the initial problem and increase the overall performance. This paper proposes a CAD system to classify dermoscopic images into three diagnosis classes: melanoma, nevi, and seborrheic keratosis. We introduce a novel ensemble scheme of convolutional neural networks (CNNs), inspired by decomposition and ensemble methods, to improve the performance of the CAD system. Unlike conventional ensemble methods, we use a directed acyclic graph to aggregate binary CNNs for the melanoma detection task. On the ISIC 2018 public dataset, our method achieves the best balanced accuracy (76.6%) among multiclass CNNs, an ensemble of multiclass CNNs with classical aggregation methods, and other related works. Our results reveal that the directed acyclic graph is a meaningful approach to develop a reliable and robust automated diagnosis system for the multiclass classification of dermoscopic images.
早期发现黑色素瘤是降低其死亡率的最有效方法。皮肤科医生借助皮肤镜检查来完成这项任务,这是一种非侵入性工具,可以观察皮肤病变的模式。需要基于皮肤镜图像开发计算机辅助诊断 (CAD) 系统来协助皮肤科医生。这些系统主要依赖于多类分类方法。然而,自动化系统对皮肤病变进行多类分类仍然是一项具有挑战性的任务。将多类问题分解为二进制问题可以降低初始问题的复杂性并提高整体性能。本文提出了一种 CAD 系统,可将皮肤镜图像分为三种诊断类别:黑色素瘤、痣和脂溢性角化病。我们引入了一种基于分解和集成方法的卷积神经网络 (CNN) 的新集成方案,以提高 CAD 系统的性能。与传统的集成方法不同,我们使用有向无环图来聚合用于黑色素瘤检测任务的二进制 CNN。在 ISIC 2018 公共数据集上,我们的方法在多类 CNN 中实现了最佳的平衡准确率(76.6%),在使用经典聚合方法的多类 CNN 集成中以及其他相关工作中均取得了最佳成绩。我们的结果表明,有向无环图是开发用于皮肤镜图像多类分类的可靠和稳健的自动化诊断系统的有意义方法。