Suppr超能文献

一种用于糖尿病视网膜病变分类的自监督等变细化分类网络。

A Self-Supervised Equivariant Refinement Classification Network for Diabetic Retinopathy Classification.

作者信息

Fan Jiacheng, Yang Tiejun, Wang Heng, Zhang Huiyao, Zhang Wenjie, Ji Mingzhu, Miao Jianyu

机构信息

School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China.

School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, China.

出版信息

J Imaging Inform Med. 2025 Jun;38(3):1796-1811. doi: 10.1007/s10278-024-01270-z. Epub 2024 Sep 19.

Abstract

Diabetic retinopathy (DR) is a retinal disease caused by diabetes. If there is no intervention, it may even lead to blindness. Therefore, the detection of diabetic retinopathy is of great significance for preventing blindness in patients. Most of the existing DR detection methods use supervised methods, which usually require a large number of accurate pixel-level annotations. To solve this problem, we propose a self-supervised Equivariant Refinement Classification Network (ERCN) for DR classification. First, we use an unsupervised contrast pre-training network to learn a more generalized representation. Secondly, the class activation map (CAM) is refined by self-supervision learning. It first uses a spatial masking method to suppress low-confidence predictions, and then uses the feature similarity between pixels to encourage fine-grained activation to achieve more accurate positioning of the lesion. We propose a hybrid equivariant regularization loss to alleviate the degradation caused by the local minimum in the CAM refinement process. To further improve the classification accuracy, we propose an attention-based multi-instance learning (MIL), which weights each element of the feature map as an instance, which is more effective than the traditional patch-based instance extraction method. We evaluate our method on the EyePACS and DAVIS datasets and achieved 87.4% test accuracy in the EyePACS dataset and 88.7% test accuracy in the DAVIS dataset. It shows that the proposed method achieves better performance in DR detection compared with other state-of-the-art methods in self-supervised DR detection.

摘要

糖尿病视网膜病变(DR)是一种由糖尿病引起的视网膜疾病。如果不进行干预,甚至可能导致失明。因此,糖尿病视网膜病变的检测对于预防患者失明具有重要意义。现有的大多数糖尿病视网膜病变检测方法都使用监督方法,这通常需要大量准确的像素级标注。为了解决这个问题,我们提出了一种用于糖尿病视网膜病变分类的自监督等变细化分类网络(ERCN)。首先,我们使用一个无监督对比预训练网络来学习更通用的表示。其次,通过自监督学习对类激活映射(CAM)进行细化。它首先使用空间掩码方法来抑制低置信度预测,然后利用像素之间的特征相似性来鼓励细粒度激活,以实现病变的更准确定位。我们提出了一种混合等变正则化损失来减轻CAM细化过程中局部最小值导致的退化。为了进一步提高分类准确率,我们提出了一种基于注意力的多实例学习(MIL),它将特征图的每个元素作为一个实例进行加权,这比传统的基于补丁的实例提取方法更有效。我们在EyePACS和DAVIS数据集上评估了我们的方法,在EyePACS数据集中达到了87.4%的测试准确率,在DAVIS数据集中达到了88.7%的测试准确率。结果表明,与自监督糖尿病视网膜病变检测中的其他现有方法相比,所提出的方法在糖尿病视网膜病变检测中取得了更好的性能。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验