Suppr超能文献

建模对抗古典猪瘟的控制策略:利用厄瓜多尔的静态和时间网络对贸易商和市场的影响。

Modelling control strategies against classical swine fever: Influence of traders and markets using static and temporal networks in Ecuador.

机构信息

Preventive Veterinary Medicine Department, School of Veterinary Medicine and Animal Science, University of São Paulo, SP, Brazil.

Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, USA.

出版信息

Prev Vet Med. 2022 Aug;205:105683. doi: 10.1016/j.prevetmed.2022.105683. Epub 2022 May 31.

Abstract

Pig farming in Ecuador represents an important economic and cultural sector, challenged by classical swine fever (CSF). Recently, the National Veterinary Service (NVS), has dedicated its efforts to control the disease by implementing pig identification, mandatory vaccination against CSF and movement control. Our objective was to characterise pig premises according to risk criteria, to model the effect of movement restriction strategies and to consider the temporal evolution of the network. Social network analysis (SNA), SIRS (susceptible, infected, recovered, susceptible) network modelling and temporal analysis were used. The network contained 751,003 shipments and 6 million pigs from 2017 to 2019. Participating premises consisted of 144,118 backyard farms, 138 industrial farms, 21,337 traders and 51 markets. The 10 most influential markets, in the Andean highlands, received between 500 and 4600 pigs each week. The 10 most influential traders made about 3 shipments with 17 pigs per week. Simulations without control strategy resulted in an average CSF prevalence of 14.4 %; targeted movement restriction reduced the prevalence to 7.2 %, while with random movement restriction it was 13 %. Targeting the top 10 national traders and markets and one of the high-risk premises in every parish was one of the best strategies with the surveillance infrastructure available, highlighting its major influence and epidemiological importance in the network. When comparing the static network with its temporal counterpart, causal fidelity (c = 0.62) showed a 38 % overestimation in the number of transmission paths, also traversing the network required 4.39 steps, lasting approximately 233 days. In conclusion, NVS surveillance strategies could be more efficient by targeting the most at-risk premises, and in particular, taking into account the temporal information would make the risk assessment much more precise. This information could contribute to implement risk-based surveillance reducing the time to eradicate CSF and other infectious animal diseases.

摘要

厄瓜多尔的养猪业是一个重要的经济和文化部门,但面临着古典猪瘟(CSF)的挑战。最近,国家兽医服务局(NVS)通过实施猪只识别、强制性 CSF 疫苗接种和移动控制来努力控制该病。我们的目标是根据风险标准对养猪场进行特征描述,模拟移动限制策略的效果,并考虑网络的时间演变。我们使用了社会网络分析(SNA)、SIRS(易感、感染、恢复、易感)网络建模和时间分析。该网络包含了 2017 年至 2019 年期间的 751003 批和 600 万头猪的交易信息。参与的养殖场包括 144118 个后院农场、138 个工业农场、21337 个交易商和 51 个市场。安第斯高地的 10 个最有影响力的市场每周接收 500 到 4600 头猪。10 个最有影响力的交易商每周进行约 3 次 17 头猪的运输。没有控制策略的模拟结果显示 CSF 的平均流行率为 14.4%;有针对性的移动限制将流行率降低到 7.2%,而随机移动限制的流行率为 13%。针对全国 10 大贸易商和市场以及每个教区的一个高风险养殖场进行靶向监测,是在现有监测基础设施下的最佳策略之一,突出了其在网络中的主要影响和流行病学重要性。当将静态网络与其时间对应物进行比较时,因果保真度(c=0.62)显示出在传播路径数量上的 38%的高估,并且网络的遍历还需要 4.39 步,持续大约 233 天。总之,通过针对最具风险的养殖场,NVS 的监测策略可以更有效,特别是考虑到时间信息将使风险评估更加精确。这些信息有助于实施基于风险的监测,从而减少根除 CSF 和其他传染性动物疾病所需的时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验