Faculty of Statistics, TU Dortmund, 44221 Dortmund, Germany.
Institute for Urban Public Health, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany.
Spat Spatiotemporal Epidemiol. 2022 Jun;41:100477. doi: 10.1016/j.sste.2022.100477. Epub 2022 Jan 29.
Multilevel Conditional Autoregressive (CAR) models help to explain the spatial effect in epidemiological studies, where subjects are nested within geographical units. This paper has two goals. Firstly, it further develops the multilevel models for longitudinal data by adding existing random effects with CAR structures that change over time. We name these models MLM tCARs. We compare the MLM tCARs to the classical multilevel growth model via simulation studies. We observe a better performance of the MLM tCARs, to retrieve the true regression coefficients and with better fit. Secondly, it provides a comprehensive decision tree for analysing data in epidemiological studies with spatially nested structure: we also consider the Multilevel CAR models (MLM CARs) for cross-sectional studies in simulation studies. We apply the models comparatively on the analysis of the association between greenness and depression in the longitudinal Heinz Nixdorf Recall Study. The results show negative association between greenness and depression.
多层次条件自回归 (CAR) 模型有助于解释流行病学研究中的空间效应,其中研究对象嵌套在地理单元中。本文有两个目标。首先,通过添加随时间变化的具有 CAR 结构的现有随机效应,进一步发展了用于纵向数据的多层次模型。我们将这些模型命名为 MLM tCARs。我们通过模拟研究将 MLM tCARs 与经典的多层次增长模型进行了比较。我们观察到 MLM tCARs 具有更好的性能,可以检索到真实的回归系数,并且拟合度更好。其次,它为具有空间嵌套结构的流行病学研究中的数据分析提供了全面的决策树:我们还在模拟研究中考虑了用于横截面研究的多层次 CAR 模型 (MLM CARs)。我们在对纵向 Heinz Nixdorf 回忆研究中绿色植物与抑郁之间的关联进行分析时,对这些模型进行了比较。结果表明绿色植物与抑郁之间存在负相关关系。