Suppr超能文献

核壳 Au@PtAg 修饰的 TiO-TiC 异质结构和靶触发 DNAzyme 级联扩增用于光电化学检测赭曲霉毒素 A。

Core-shell Au@PtAg modified TiO-TiC heterostructure and target-triggered DNAzyme cascade amplification for photoelectrochemical detection of ochratoxin A.

机构信息

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China.

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.

出版信息

Anal Chim Acta. 2022 Jul 11;1216:339943. doi: 10.1016/j.aca.2022.339943. Epub 2022 May 25.

Abstract

Efficient charge separation and utilization are critical factors to obtain a high initial signal in photoelectrochemical (PEC) aptasensor. Reports demonstrate that constructing metal/semiconductor Schottky junction can effectively improve the charge separation efficiency. Herein, a photoelectrode Au@PtAg/TiO-TiC Schottky junction is successfully synthesized. Specifically, the Schottky junction between core-shell Au@PtAg and TiO-TiC facilitates the efficiency of photogenerated electron transfer and enables the transfer of photogenerated electrons from TiO-TiC to Au@PtAg. Noteworthy, the core-shell Au@PtAg acts as a photoelectron receiver to capture and store electrons, which further facilitates the separation of photogenerated electron-hole pairs, resulting enhanced photocurrent generation without sacrificial agents. Moreover, through the Mg-dependent DNAzyme cascade amplification, the sensitivity of the PEC aptasensor is further improved. Hence, we report an ultrasensitive PEC aptasensor for ochratoxin A (OTA) assy based on Au@PtAg/TiO-TiC Schottky junction and Mg-dependent DNAzyme cascade amplification. As a result, the established PEC aptasensor exhibits excellent photocurrent performance in the range of 5 fg mL-10 ng mL with a detection limit as low as 1.73 fg mL, showing high sensitivity, selectivity as well as stability. This strategy provides a versatile and promising avenue for the development of high-performance PEC aptasensor.

摘要

有效的电荷分离和利用是获得光电化学(PEC)适体传感器高初始信号的关键因素。有报道表明,构建金属/半导体肖特基结可以有效地提高电荷分离效率。在此,成功合成了光电极 Au@PtAg/TiO-TiC 肖特基结。具体来说,核壳 Au@PtAg 与 TiO-TiC 之间的肖特基结促进了光生电子转移效率,并使光生电子从 TiO-TiC 转移到 Au@PtAg。值得注意的是,核壳 Au@PtAg 充当光电子接收器,以捕获和存储电子,从而进一步促进光生电子-空穴对的分离,实现了在没有牺牲剂的情况下增强的光电流产生。此外,通过 Mg 依赖性 DNA 酶级联放大,进一步提高了 PEC 适体传感器的灵敏度。因此,我们基于 Au@PtAg/TiO-TiC 肖特基结和 Mg 依赖性 DNA 酶级联放大报告了一种用于检测赭曲霉毒素 A(OTA)的超灵敏 PEC 适体传感器。结果,所建立的 PEC 适体传感器在 5 fg mL-10 ng mL 的范围内表现出优异的光电流性能,检测限低至 1.73 fg mL,具有高灵敏度、选择性和稳定性。该策略为开发高性能 PEC 适体传感器提供了一种通用且有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验