Ma Tianwen, Li Yang, Huggins Jane E, Zhu Ji, Kang Jian
Department of Biostatistics, University of Michigan.
Department of Statistics, University of Michigan.
J Am Stat Assoc. 2022;117(539):1122-1133. doi: 10.1080/01621459.2022.2041422. Epub 2022 Mar 18.
A brain-computer interface (BCI) is a system that translates brain activity into commands to operate technology. A common design for an electroencephalogram (EEG) BCI relies on the classification of the P300 event-related potential (ERP), which is a response elicited by the rare occurrence of target stimuli among common non-target stimuli. Few existing ERP classifiers directly explore the underlying mechanism of the neural activity. To this end, we perform a novel Bayesian analysis of the probability distribution of multi-channel real EEG signals under the P300 ERP-BCI design. We aim to identify relevant spatial temporal differences of the neural activity, which provides statistical evidence of P300 ERP responses and helps design individually efficient and accurate BCIs. As one key finding of our single participant analysis, there is a 90% posterior probability that the target ERPs of the channels around visual cortex reach their negative peaks around 200 milliseconds post-stimulus. Our analysis identifies five important channels (PO7, PO8, Oz, P4, Cz) for the BCI speller leading to a 100% prediction accuracy. From the analyses of nine other participants, we consistently select the identified five channels, and the selection frequencies are robust to small variations of bandpass filters and kernel hyper-parameters.
脑机接口(BCI)是一种将大脑活动转化为操作技术的命令的系统。脑电图(EEG)脑机接口的一种常见设计依赖于对P300事件相关电位(ERP)的分类,P300是在常见的非目标刺激中罕见出现目标刺激时引发的一种反应。现有的ERP分类器很少直接探索神经活动的潜在机制。为此,我们在P300 ERP脑机接口设计下,对多通道真实脑电信号的概率分布进行了新颖的贝叶斯分析。我们旨在识别神经活动的相关时空差异,这为P300 ERP反应提供了统计证据,并有助于设计个性化高效且准确的脑机接口。作为我们单受试者分析的一个关键发现,视觉皮层周围通道的目标ERP在刺激后约200毫秒达到负峰的后验概率为90%。我们的分析为脑机接口拼写器确定了五个重要通道(PO7、PO8、Oz、P4、Cz),预测准确率达到100%。从对其他九名受试者的分析中,我们一致选择已确定的五个通道,并且选择频率对于带通滤波器和核超参数的小变化具有鲁棒性。