Suppr超能文献

基于脑电图的脑机接口中神经活动的贝叶斯推断

Bayesian Inferences on Neural Activity in EEG-Based Brain-Computer Interface.

作者信息

Ma Tianwen, Li Yang, Huggins Jane E, Zhu Ji, Kang Jian

机构信息

Department of Biostatistics, University of Michigan.

Department of Statistics, University of Michigan.

出版信息

J Am Stat Assoc. 2022;117(539):1122-1133. doi: 10.1080/01621459.2022.2041422. Epub 2022 Mar 18.

Abstract

A brain-computer interface (BCI) is a system that translates brain activity into commands to operate technology. A common design for an electroencephalogram (EEG) BCI relies on the classification of the P300 event-related potential (ERP), which is a response elicited by the rare occurrence of target stimuli among common non-target stimuli. Few existing ERP classifiers directly explore the underlying mechanism of the neural activity. To this end, we perform a novel Bayesian analysis of the probability distribution of multi-channel real EEG signals under the P300 ERP-BCI design. We aim to identify relevant spatial temporal differences of the neural activity, which provides statistical evidence of P300 ERP responses and helps design individually efficient and accurate BCIs. As one key finding of our single participant analysis, there is a 90% posterior probability that the target ERPs of the channels around visual cortex reach their negative peaks around 200 milliseconds post-stimulus. Our analysis identifies five important channels (PO7, PO8, Oz, P4, Cz) for the BCI speller leading to a 100% prediction accuracy. From the analyses of nine other participants, we consistently select the identified five channels, and the selection frequencies are robust to small variations of bandpass filters and kernel hyper-parameters.

摘要

脑机接口(BCI)是一种将大脑活动转化为操作技术的命令的系统。脑电图(EEG)脑机接口的一种常见设计依赖于对P300事件相关电位(ERP)的分类,P300是在常见的非目标刺激中罕见出现目标刺激时引发的一种反应。现有的ERP分类器很少直接探索神经活动的潜在机制。为此,我们在P300 ERP脑机接口设计下,对多通道真实脑电信号的概率分布进行了新颖的贝叶斯分析。我们旨在识别神经活动的相关时空差异,这为P300 ERP反应提供了统计证据,并有助于设计个性化高效且准确的脑机接口。作为我们单受试者分析的一个关键发现,视觉皮层周围通道的目标ERP在刺激后约200毫秒达到负峰的后验概率为90%。我们的分析为脑机接口拼写器确定了五个重要通道(PO7、PO8、Oz、P4、Cz),预测准确率达到100%。从对其他九名受试者的分析中,我们一致选择已确定的五个通道,并且选择频率对于带通滤波器和核超参数的小变化具有鲁棒性。

相似文献

1
Bayesian Inferences on Neural Activity in EEG-Based Brain-Computer Interface.基于脑电图的脑机接口中神经活动的贝叶斯推断
J Am Stat Assoc. 2022;117(539):1122-1133. doi: 10.1080/01621459.2022.2041422. Epub 2022 Mar 18.
3
A toolbox for decoding BCI commands based on event-related potentials.一种基于事件相关电位解码脑机接口命令的工具箱。
Front Hum Neurosci. 2024 Mar 4;18:1358809. doi: 10.3389/fnhum.2024.1358809. eCollection 2024.
6
Capsule Network for ERP Detection in Brain-Computer Interface.胶囊网络在脑机接口中的 ERP 检测。
IEEE Trans Neural Syst Rehabil Eng. 2021;29:718-730. doi: 10.1109/TNSRE.2021.3070327. Epub 2021 Apr 19.

引用本文的文献

本文引用的文献

2
Scalar-on-Image Regression via the Soft-Thresholded Gaussian Process.基于软阈值高斯过程的图像标量回归
Biometrika. 2018 Mar;105(1):165-184. doi: 10.1093/biomet/asx075. Epub 2018 Jan 19.
3
P300 Latency Estimation Using Least Mean Squares Filter.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1976-1979. doi: 10.1109/EMBC.2018.8512644.
7
Electrode subset selection methods for an EEG-based P300 brain-computer interface.用于基于脑电图的P300脑机接口的电极子集选择方法。
Disabil Rehabil Assist Technol. 2015 May;10(3):216-20. doi: 10.3109/17483107.2014.884174. Epub 2014 Feb 10.
8
A plug-and-play brain-computer interface to operate commercial assistive technology.一种用于操作商业辅助技术的即插即用型脑机接口。
Disabil Rehabil Assist Technol. 2014 Mar;9(2):144-50. doi: 10.3109/17483107.2013.785036. Epub 2013 Apr 16.
10
Does the 'P300' speller depend on eye gaze?“P300”拼写器是否依赖于眼球注视?
J Neural Eng. 2010 Oct;7(5):056013. doi: 10.1088/1741-2560/7/5/056013. Epub 2010 Sep 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验