Suppr超能文献

埃塞俄比亚早产新生儿死亡临床风险预测列线图的开发。

Development of a Nomogram for Clinical Risk Prediction of Preterm Neonate Death in Ethiopia.

作者信息

Hailemeskel Habtamu Shimels, Tiruneh Sofonyas Abebaw

机构信息

Department of Pediatrics and Neonatal Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia.

Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia.

出版信息

Front Pediatr. 2022 May 27;10:877200. doi: 10.3389/fped.2022.877200. eCollection 2022.

Abstract

INTRODUCTION

In 2020, over 6,500 newborn deaths occured every day, resulting in 2.4 million children dying in their 1st month of life. Ethiopia is one of the countries that will need to step up their efforts and expedite progress to meet the 2030 sustainable development goal. Developing prediction models to forecast the mortality of preterm neonates could be valuable in low-resource settings with limited amenities, such as Ethiopia. Therefore, the study aims to develop a nomogram for clinical risk prediction of preterm neonate death in Ethiopia in 2021.

METHODS

A prospective follow-up study design was employed. The data were used to analyze using R-programming version 4.0.3 software. The least absolute shrinkage and selection operator (LASSO) regression is used for variable selection to be retained in the multivariable model. The model discrimination probability was checked using the ROC (AUROC) curve area. The model's clinical and public health impact was assessed using decision curve analysis (DCA). A nomogram graphical presentation created an individualized prediction of preterm neonate risk of mortality.

RESULTS

The area under the receiver operating curve (AUROC) discerning power for five sets of prognostic determinants (gestational age, respiratory distress syndrome, multiple neonates, low birth weight, and kangaroo mother care) is 92.7% (95% CI: 89.9-95.4%). This prediction model was particular (specificity = 95%) in predicting preterm death, with a true positive rate (sensitivity) of 77%. The best cut point value for predicting a high or low risk of preterm death (Youden index) was 0.3 (30%). Positive and negative predictive values at the Youden index threshold value were 85.4 percent and 93.3 percent, respectively.

CONCLUSION

This risk prediction model provides a straightforward nomogram tool for predicting the death of preterm newborns. Following the preterm neonates critically based on the model has the highest cost-benefit ratio.

摘要

引言

2020年,每天有超过6500例新生儿死亡,导致240万儿童在出生后的第一个月内死亡。埃塞俄比亚是需要加大努力并加快进展以实现2030年可持续发展目标的国家之一。在像埃塞俄比亚这样资源有限、设施匮乏的低资源环境中,开发预测模型来预测早产新生儿的死亡率可能具有重要价值。因此,本研究旨在为2021年埃塞俄比亚早产新生儿死亡的临床风险预测制定一个列线图。

方法

采用前瞻性随访研究设计。使用R编程版本4.0.3软件对数据进行分析。使用最小绝对收缩和选择算子(LASSO)回归进行变量选择,以保留在多变量模型中。使用ROC(AUROC)曲线面积检查模型的辨别概率。使用决策曲线分析(DCA)评估模型对临床和公共卫生的影响。列线图图形展示可对早产新生儿的死亡风险进行个体化预测。

结果

五组预后决定因素(胎龄、呼吸窘迫综合征、多胎新生儿、低出生体重和袋鼠式护理)的受试者工作特征曲线(AUROC)辨别能力为92.7%(95%CI:89.9 - 95.4%)。该预测模型在预测早产死亡方面具有特异性(特异性 = 95%),真阳性率(敏感性)为77%。预测早产死亡高风险或低风险的最佳切点值(约登指数)为0.3(30%)。在约登指数阈值下的阳性和阴性预测值分别为85.4%和93.3%。

结论

这种风险预测模型为预测早产新生儿死亡提供了一种简单的列线图工具。基于该模型对早产新生儿进行严格随访具有最高的成本效益比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40c9/9184443/2860fc567b38/fped-10-877200-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验