Suppr超能文献

构建和鉴定用于非小细胞肺癌的十八基因肿瘤微环境预后模型。

Constructing and identifying an eighteen-gene tumor microenvironment prognostic model for non-small cell lung cancer.

机构信息

Department of Thoracic Surgery, Linyi People's Hospital, Linyi, Shandong, 276000, China.

Department of Pain, Linyi People's Hospital, Linyi, Shandong, 276000, China.

出版信息

World J Surg Oncol. 2024 Nov 28;22(1):319. doi: 10.1186/s12957-024-03588-y.

Abstract

BACKGROUND

The tumor microenvironment (TME) plays a crucial role in tumorigenesis and tumor progression. This study aimed to identify novel TME-related biomarkers and develop a prognostic model for patients with non-small-cell lung cancer (NSCLC).

METHODS

After downloading and preprocessing data from The Cancer Genome Atlas (TCGA) data portal and Gene Expression Omnibus (GEO) datasets, we classified the molecular subtypes using the "NMF" R package. We performed survival analysis and quantified immune scores between clusters. A Cox proportional hazards model was then constructed, and its formula was produced. We assessed model performance and clinical utility. A prediction nomogram was also constructed and validated. Additionally, we explored the potential regulatory mechanisms of our TME gene signature using Gene Set Enrichment Analysis (GSEA).

RESULTS

From data processing and univariate Cox regression analysis, 57 TME-related prognostic genes were identified, and two significantly distinct clusters were established. Using Cox regression and Lasso regression, an 18-gene TME-related prognostic model was developed. Patients were stratified into high- and low-risk groups based on the risk score, with survival analysis showing that the low-risk group had significantly better outcomes than the high-risk group (P < 0.01). ROC curve analysis demonstrated strong predictive performance, with 1-year, 3-year, and 5-year AUC values ranging from 0.654 to 0.702 across different cohorts. The model accurately predicted survival outcomes across subgroups with varying clinical features, and its predictive accuracy was validated through a nomogram.

CONCLUSIONS

We developed a prognostic model based on TME-related genes in NSCLC. Our 18-gene TME signature can effectively predict the prognosis of NSCLC with high accuracy.

摘要

背景

肿瘤微环境(TME)在肿瘤发生和肿瘤进展中起着至关重要的作用。本研究旨在鉴定新的 TME 相关生物标志物,并为非小细胞肺癌(NSCLC)患者开发一个预后模型。

方法

从癌症基因组图谱(TCGA)数据门户和基因表达综合数据库(GEO)数据集下载并预处理数据后,我们使用“NMF”R 包对分子亚型进行分类。我们进行了生存分析,并对簇之间的免疫评分进行了量化。然后构建了 Cox 比例风险模型,并生成了其公式。我们评估了模型的性能和临床实用性。还构建并验证了预测列线图。此外,我们使用基因集富集分析(GSEA)探索了我们的 TME 基因特征的潜在调节机制。

结果

通过数据处理和单变量 Cox 回归分析,确定了 57 个与 TME 相关的预后基因,并建立了两个显著不同的聚类。使用 Cox 回归和 Lasso 回归,开发了一个 18 个基因的 TME 相关预后模型。根据风险评分将患者分为高风险和低风险组,生存分析表明低风险组的生存结果明显优于高风险组(P<0.01)。ROC 曲线分析表明具有较强的预测性能,在不同队列中,1 年、3 年和 5 年 AUC 值范围为 0.654 至 0.702。该模型能够准确预测具有不同临床特征的亚组的生存结果,并通过列线图进行了验证。

结论

我们基于 NSCLC 中与 TME 相关的基因开发了一个预后模型。我们的 18 个基因 TME 特征可以有效地预测 NSCLC 的预后,具有较高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecee/11603896/ad2bc0e2a29e/12957_2024_3588_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验